Context OO	Material description	Experiments 00	Non-linearities	Conclusions OO

Characterization of pressure-dependent sound absorption in perforated rigid-frame porous materials SAPEM 2023 – Sorrento. Italy

Théo Cavalieri^{1,a,b}, Bart Van Damme¹

¹ Empa, Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Zürich, Switzerland ^a Now at: Laboratoire d'Acoustique de l'Université du Mans, UMR 6613, Institut d'Acoustique Graduate School, CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France ^bContact: theo.cavalieri@univ-lemans.fr

November 7-10, 2023

Materials Science and Technology

Context ●O	Material description	Experiments 00	Non-linearities	Conclusions OO
Context				

Are commonly used for **sound absorption**

Context ●O	Material description	Experiments 00	Non-linearities	Conclusions OO
Context				

- Are commonly used for sound absorption
- Lightweight, and suitable for mass-production

Context ●O	Material description	Experiments 00	Non-linearities	Conclusions OO
Context				

- Are commonly used for sound absorption
- Lightweight, and suitable for mass-production
- Display poro-elastic features

Context ●O	Material description	Experiments 00	Non-linearities	Conclusions OO
Context				

- Are commonly used for sound absorption
- Lightweight, and suitable for mass-production
- Display poro-elastic features
- Are not efficient in sub-wavelength regime

Context ●O	Material description	Experiments 00	Non-linearities	Conclusions OO
Context				

- Are commonly used for sound absorption
- Lightweight, and suitable for mass-production
- Display poro-elastic features
- Are not efficient in sub-wavelength regime

Perforated closed-pores mineral foams

- Made of gypsum, cement, or ceramics
- Controlled porosity and wall thickness patented by *de Cavis AG*
- Good thermal insulation/resilience properties

Context O●	Material description	Experiments 00	Non-linearities	Conclu 00
Context				

Context	Material description	Experiments	Non-linearities	Conclusions
00	●O	00		OO
Porosities at	multiple scales			

(a)

(c)

- Skeleton is assumed rigid
- Homogenisation theory is applicable
- Bulk modulus and mass density are complex

Context OO	Material description	Experiments 00	Non-linearities	Conclusions OO
Perforation	in the pores			

(a)

(c)

Context OO	Material description	Experiments 00	Non-linearities	Conclusions OO
Perforation in	the pores			

С		nt	e	
C	C			

Material description

Experiments

Tunable flow resistivity

Measuring σ

- According to ISO 9053-1
- Measured on both sides
- Multiple identical samples tested

Darcy's law:
$$\langle \mathbf{v} \rangle = -\frac{\mathbf{K_0}}{\eta} \nabla p$$

Flow resistivity: $\sigma = \frac{\eta}{K_0}$

Context OO	Material description	Experiments ●O	Non-linearities	Conclusions 00
Tunable flow	resistivity			

Measuring σ

- According to ISO 9053-1
- Measured on both sides
- Multiple identical samples tested

Darcy's law:
$$\langle \mathbf{v}
angle = -\frac{\mathbf{K_0}}{\eta} \nabla_{\mu}$$

Flow resistivity: $\sigma = \frac{\eta}{K_0}$

т/

Context	
00	

Sub-wavelength absorption

Measuring acoustic absorption

- According to ISO 10534-2
- Measured on both sides
- Multiple identical samples tested
- White noise excitation up to 1.6 kHz

Con	ite	xt
00		

Sub-wavelength absorption

Measuring acoustic absorption

- According to ISO 10534-2
- Measured on both sides
- Multiple identical samples tested
- White noise excitation up to 1.6 kHz

Perforated structure are known to exhibit non-linearities

Perforated structure are known to exhibit non-linearities

dB

- Thickness: 25 mm
- Pore size: 3 mm
- Perforation dist.: 5 mm

Context	Material description	Experiments	Non-linearities	Conclusions
OO		00	O●O	00
Static regime)			

Velocity magnitude and pathlines at $\Delta p = 1 \text{ mPa}$ and $\langle \mathbf{v} \cdot \mathbf{e}_z \rangle = 1.95 \times 10^{-5} \text{ m.s}^{-1}$.

Context OO	Material description	Experiments 00	Non-linearities O●O	Conclusions OO
Static regime	;			

Velocity magnitude and pathlines at $\Delta p = 0.5 \,\mathrm{Pa}$ and $\langle \mathbf{v} \cdot \mathbf{e}_z \rangle = 7.5 \times 10^{-3} \,\mathrm{m.s}^{-1}$.

Context 00	Material description	Experiments 00	Non-linearities ○●○	Conclusions OO
Static rec	jime			
	Increase of flow	w resistivity σ with pre	ssure drop ∇p	

Velocity magnitude and pathlines at $\Delta p = 100 \,\mathrm{Pa}$ and $\langle \mathbf{v} \cdot \mathbf{e}_z \rangle = 0.14 \,\mathrm{m.s}^{-1}$.

Context	Material description	Experiments	Non-linearities	Conclusions
00		00	O●O	00
Static regime				

Increase of flow resistivity σ with pressure drop $\boldsymbol{\nabla}p$

Context	Material description	Experiments	Non-linearities	Conclusions
OO		00	O●O	OO
Static regime	è			

Increase of flow resistivity σ with pressure drop $\boldsymbol{\nabla} p$

Frequency (kHz)

This is observed numerically and described in the scientific literature

- Forchheimer empirical description of flow-resistivity
 - Low $\operatorname{Re} \to \sigma = f(\operatorname{Re}^2)$ and high $\operatorname{Re} \to \sigma = f(\operatorname{Re})$

Non-linear corrections to Darcy's law

Context OO	Material description	Experiments 00	Non-linearities	Conclusions • O
Conclusio	ons and perspectiv	es		
Conclusions:				
Perforate	d closed-pores foams are	e efficient for low-free	uency absorption	
Non-linea	arities are present at hig	h SPL		
The performance	prated foams can be ada	oted for extreme envi	ronments	

Context OO	Material description	Experiments 00	Non-linearities	Conclusions ●O
Conclusion	s and perspective	es		
Conclusions:				
Perforated of the second se	closed-pores foams are	efficient for low-freq	uency absorption	
Non-linearit	ies are present at higl	h SPL		
The perfora	ted foams can be adap	oted for extreme envir	ronments	

Perspectives:

- Perform transmission measurements on samples
- Investigate Reynold's number in the perforations
- Link geometric parameters to absorption performances
- Model linear and non-linear resistance and reactance

Context Material description		Experiments 00	Non-linearities	Conclusions O
Th	nank you for attending!			
	J. F. Allard and N. Atalla. <i>Propagation of Sou</i> 2009.	nd in Porous Media: Modellin	g Sound Absorbing Materials.	Wiley, 1 edition, Oct.
	Y. Aurégan and M. Pachebat. Measurement 11(6):1342–1345, June 1999.	of the nonlinear behavior of a	coustical rigid porous materials	. Physics of Fluids,
	D. Lafarge, P. Lemarinier, J. F. Allard, and V. The Journal of the Acoustical Society of Ame	Tarnow. Dynamic compressib prica, 102(4):1995–2006, Oct.	ility of air in porous structures a 1997.	t audible frequencies.
	J. D. McIntosh and R. F. Lambert. Nonlinear numerical solutions. <i>The Journal of the Acou</i>	wave propagation through rig Istical Society of America, 88(id porous materials. I: Nonlinea 4):1939–1949, Oct. 1990.	r parametrization and
	E. Sanchez-Palencia. Non-homogeneous mo Berlin, 1980.	edia and vibration theory. Nur	nber 127 in Lecture notes in ph	ysics. Springer,
	B. Van Damme, A. Goetz, G. Hannema, A. Z	emp, C. T. Nguyen, and C. Pe	errot. Acoustic absorption prope	erties of perforated

The authors gratefully acknowledge M. Haselbach, E. Pieper, M. Kappeli, U. Pachale at Empa Dübendorf, and U. Gonzenbach, P. Sabet, and P. Struzenegger from de Cavis AG. This work is jointly funded by Innosuisse project 56633.1 and de Cavis AG.

gypsum foams. In Forum Acusticum, pages 2887-2888, 2020.