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Hypothesis

o Zwikker & Kosten (1949) introduce the hypothesis of a decoupling
between the visco-inertial and (micro)thermal effects.
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Hypothesis

o Zwikker & Kosten (1949) introduce the hypothesis of a decoupling
between the visco-inertial and (micro)thermal effects.

e Biot (1956) considers visco-inertio-thermal effects & elastical effects
and their coupling.
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pproaches

e A porous material may be viewed as an equivalent fluid only if
there is an order of magnitude between the observation wavelength
A and the cell characteristic size ¢.
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Equivalent fluid

e Visco-thermal dissipation are taken into account
using the dynamic mass density g (w) and the
dynamic bulk modulus K (w).

These quantities are
complex and frequency
dependent.

P(w)

Visco-inertial  Thermal
effects effects
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Models of visco-thermal dissipation

Straight cylindrical ~ Slanted cylindrical Non uniform sections Non-uniform sections
pores pores with possible
constrictions

Material
morphology
and number

of parameters

Model and parameter Zwikker-Kosten Attenborough
examples 9o =n/k 90 b

Wilson
Po Tvor Koo Tent

Johnson-Champoux-Allard
¢ 0o AN K

Johnson-Champoux-Allard-Pride-Lafarge
9o ApNkyp
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Macroscopic parameters

¢: open porosity
o static air flow resistivity

A: viscous characteristic length

e A’: thermal characteristic length

e a,: high frequency limit of tortuosity
e k: static thermal permeability

e (: static viscous tortuosity

o «: static thermal tortuosity
e ky: static viscous permeability (= n/0)
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Analytical computation : perforated plate

o A perforated plate may be viewed as a porous
material.

e Macroscopic parameters:
¢: perforation rate

A=N=r
8n
o=—
or

ne

Ao = 1+ —

L

Atalla N, Sgard F. "Modeling of perforated plates and screens using
rigid frame porous models", J. Sound Vib. 303 (2007).

L: Thickness of the plate
€: Length correction

n: Factor depending on the
nature of upstream and
downstream materials
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Analytic computation: constant cross-section

SOUND PROPAGATION
ME

THROUGH SOl i
MATERIALS WITH Dynamic mass density Dynamic bulk medulus
CYLINDRICAL PORES P Ko

OF CONSTANT
CROSS-SECTIONS

2 (=TT u]

R e

Vo Zwikker & C. W, Kosten 1949 after work by J. W Strutt (lord Rayleigh).

I tanh(3y/J1
;\:-[\ o] ]
0 )

with 3 =7 [T and7 the hydraulic radius equals to
0

/- 3 orhlc + 3 Do Pr = 3% ccorn(FT 0 +3])

M. R Stinson & Y. Champaux, . Acoust. Sec. Am. 91, 685-695, 1992.

djwpoPr [ =
Ll P
M. Stinson, . Acoust. Soc. Am. B2, 550-558, 1991

. R, . A, J. M. Sabatier & . Raspel, . Acoust. Soc. Am. 89, 2617-2624, 1991

(n+1/2)w /b

o Density of air at rest kem
" Dynarmic viscosity of air Nam=? Bessel funetion of the first kind
¥ Ratio of specific heat
i With & expl+jov} time convention, characteristic impedance
n Staticsatmospheric pressure  Pa and wavenumber are deduced from:
Pr Prandt's number .
w Pulsation (angular frequency)
¢ Open porosity of the material
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Micro-macro approaches

Objectives of micro-macro approaches :

e to link the microstructure to macroscopic parameters,
o to understand the material response according to various physics,

e to communicate between the different actors of the manufacturing.
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Approaches

Medium 1
Medium 2

Effective medium

a) Real microstructure b) Idealized cell c) Self consistent model
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Real microstructure
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+ Real microstructure
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+ Real microstructure
- Expensive in memory and time
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Real microstructure

+ Real microstructure
- Expensive in memory and time
- Not adapted for optimisation
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Idealized cell

(@)

+ Adapted for optimisation
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Idealized cell

(@) (b)

+ Adapted for optimisation
- Difficulty in the selection and sizing of the cell
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Direct method: microscopic scale

o Resolution of two equations at the microscopic scale in dynamic
regime
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Direct method: microscopic scale

o Resolution of two equations at the microscopic scale in dynamic
regime

e Viscous effects (Navier-Stokes equation):
jwpoil = —6}3 + Vi
e Thermal effects (Heat conduction equation):

Jwpoc,T = jwp + KV*%
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Direct method: microscopic scale

o Resolution of two equations at the microscopic scale in dynamic
regime
e Viscous effects (Navier-Stokes equation):
jwpoil = —6}3 + Vi
e Thermal effects (Heat conduction equation):
Jwpoc,T = jwp + KV*%
ii: velocity field
p: pressure field

7: temperature field
Po, Cp, M, k2 properties of the fluid (air)
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Direct method: macroscopic scale

e Field integration
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Micro-Macro approaches

Direct method: macroscopic scale

e Field integration

e Viscous effects (Darcy’s law):

= | A

¢ (@) = =V (p)

~ _ n
Peq (w) = ](J.)ic (@)
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Micro-Macro approaches

Direct method: macroscopic scale

e Field integration

e Viscous effects (Darcy’s law):

ko
8ty = £9 p)
n
~ _ n
Peq (w) = ](J.JC (@)

e Thermal effects: -,
.k
¢(T) = Jw— )

~ I jﬁl}’(w) - _ vPo
Bw)=y—-(y l)v, 5 and Keq(w)——¢lg(w)
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Hybrid method

The hybrid method contains two stages :

e Computation of the macroscopic parameters (¢, o, A, A’, @, ...) from
asymptotic behaviour (LF & HF) of the visco-inertial and thermal
effects.
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The hybrid method contains two stages :

e Computation of the macroscopic parameters (¢, o, A, A’, @, ...) from
asymptotic behaviour (LF & HF) of the visco-inertial and thermal
effects.

e Computation of the dynarpic mass density p (w) and of the
dynamic bulk modulus K (w) from semi-phenomenological models
(JCA, JCAL, JCAPL, ...).

From the microstructure to condensed meta-material models 16/ 41



Micro-Macro approaches
0O00000e00

Hybrid method

The hybrid method contains two stages :

e Computation of the macroscopic parameters (¢, o, A, A’, @, ...) from
asymptotic behaviour (LF & HF) of the visco-inertial and thermal
effects.

e Computation of the dynamic mass density 5 (w) and of the
dynamic bulk modulus K (w) from semi-phenomenological models
(JCA, JCAL, JCAPL, ...).

The two main advantages of this method are :

o the prediction on broad frequency range from only three
computations,

e and the determination of the macroscopic parameters allowing a
deeper analysis.
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Hybrid method : summary

e Geometric mesh :

- porosity ¢
- thermal characteristic length A’

usion

From the microstructure to condensed meta-material models 17/ 41



Micro-Macro approaches
0000000 @0

Hybrid method : summary
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e LF viscous computation (Stokes):
- static air flow resistivity o
- static viscous tortuosity «, (Optional)
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Hybrid method : summary

e Geometric mesh :

- porosity ¢
- thermal characteristic length A’

e LF viscous computation (Stokes):
- static air flow resistivity o
- static viscous tortuosity «, (Optional)

e HF inertial computation (Perfect fluid)(= electrical conduction):
- viscous characteristic length A
- HF limit of tortuosity @,

e LF thermal computation (thermal conduction):
- static thermal permeability k;
- static thermal tortuosity aé) (Optional)
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Adding elastic effects

e Using Biot’s theory, it is possible to couple elastic effects to any
visco-thermal model

F.-X. Bécot, L. Jaouen, "Alternative Biot's form for porous media" (2013)

From the microstructure to condensed meta-material models 18/ 41



Micro-Macro approaches
0O0000000e

Adding elastic effects

e Using Biot’s theory, it is possible to couple elastic effects to any
visco-thermal model
F.-X. Bécot, L. Jaouen, "Alternative Biot's form for porous media" (2013)

o Mixing laws: E = E1(1 — ¢yes0) + ExPreso
J. C. Halpin , J. L. Kardos , "The Halpin-Tsai equations: A review" (1976)
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e Using Biot’s theory, it is possible to couple elastic effects to any
visco-thermal model
F.-X. Bécot, L. Jaouen, "Alternative Biot's form for porous media" (2013)

o Mixing laws: E = E1(1 — ¢yes0) + ExPreso
J. C. Halpin , J. L. Kardos , "The Halpin-Tsai equations: A review" (1976)

e Micro-macro approaches for elastic properties

M. T. Hoang, G. Bonnet, H. T. Luu, C. Perrot, "Linear elastic properties derivation from
microstructures representative of transport parameters” (2014)
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Condensed models

e Example of a car with acoustical sound package

al modeling of porous media

Source: A. Duval - Sapem 2005
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Condensed models

e Example of a car with acoustical sound package

w——

Source: A. Duval - Sapem 2005

e How to add physics to the models to reduce their size?
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e Focus on the porous parts

Source: A. Duval - Sapem 2005
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e Focus on one porous part

Source: A. Duval - Sapem 2005

e Is it possible to model rigid or elastic meta-materials as a condensed
model?
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Non-conventional phenomena involved in meta-materials

Multi-scale material with diffusion processes

- Double porosity media (air inclusions)
- Solid inclusions

- Porous inclusions

- Sorption

Acoustical resonators
Soft membranes
Periodicity
Impedance matching
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Double porosity media

e Porous media with air inclusions

From the microstructure to condensed meta-material models 22/ 41



Condensed models
0008000000000 00000000

Double porosity media

e Porous media with air inclusions

17Sound absorption coefficient a

e Weight reduction
e Can take advantage from 08
additional diffusion effects 0sl
0.4f
0.21
= Single porosity
o == Double porosity| :

0 1000 2000 3000 4000 5000
Frequency (Hz)
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Double porosity media

e Porous media with air inclusions

17Sound absorption coefficient a

e Weight reduction
e Can take advantage from 08
additional diffusion effects 0sl
N 1
Peg = !
“ (1~_ ¢mes[’) ¥ - 1 04
peq_micro peq_mesa 0.2f
= Single porosity
i( _ 1 o . . . Double porosity :
°q 0 000 2000 3000 000 000
“ (1 - ¢meso) Fd 1 ! FreAquency (HSZ)
Keq_mi(?ro Keq_meso

C. Boutin, P. Royer, J.L. Auriault "Acoustic absorption of porous surfacing with dual poros-

F4: Dynamic diffusion function. ity".int. J. Solids Struct. 35, 4709-4737 (1998)
X. Olny, C. Boutin, "Acoustic wave propagation in double porosity media",J. Acoust. Soc.
Am. 114, 73-89 (2003)
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Solid inclusions

e Porous media with solid inclusions

—
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Solid inclusions

e Porous media with solid inclusions

e Tortuous effect

e Eventualy add multiple
scattering effect

V. Tournat, V. Pagneux, D. Lafarge, L.
Jaouen, "Multiple scattering of acous-
tic waves and porous absorbing media",
Phys. Rev. E 70, 026609, (2004)

_9—

l§ound absorption coefficient o

0.8f
0.6r
0.4r
0.2r
= Single porosity
= Solid inclusion
0

0 1000 2000 3000 4000 5000

Frequency (Hz)
F. Chevillotte, L. Jaouen, F.-X. Bécot, "On the modeling of visco-thermal dissipations in
heterogeneous porous media",J. Acoust. Soc. Am. 138(6), 3922-3929 (2015)
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Porous inclusions

e Porous media with porous inclusions

i

deling of porous media
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Porous inclusions

e Porous media with porous inclusions

i

e Tortuous effect Sound absorption coefficient a

. 1
e Permeability contrast
e Potential pressure diffusion o8
effect 0sl
0.4r
0.2r
= Single porosity
o = Porous composite|

0 1000 2000 3000 4000 5000
Frequency (Hz)

F. Chevillotte, L. Jaouen, F.-X. Bécot, "On the modeling of visco-thermal dissipations in
heterogeneous porous media”,J. Acoust. Soc. Am. 138(6), 3922-3929 (2015)

From the microstructure to condensed meta-material models 24/ 41



| modeling of porous media

e Double porosity with
nanoscale (third scale of
porosity)

e The diffusion process can
be enhanced by using sorption
process (adsorption/desorption)
e Activated carbon for instance
e Reducing the bulk modulus
(virtually increasing the volume
of a cavity)

Condensed models
0O00000®@00000000000000

Sorption

=1 xd

Q, =040,

i

Fig. 1. Diagram of the scales of a hierarchical sorptive porous material.

R. Venegas, O. Umnova, "Influence of sorption on sound propagation in granular acti-
vated carbon",J. Acoust. Soc. Am. 68, 162-181 (2017)

R. Venegas, C. Boutin, "Acoustics of sorptive porous materials.", Wavemotion 828, 135-
174 (2017)
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Acoustical resonators

e Porous media with (inner) resonators

IEL

G Q
G O o )
Q c G
G D) a ©
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Acoustical resonators

e Porous media with (inner) resonators

G Q
G O o )
Q c G
G D) a ©

1L
e Tortuous effect
1

Sound absorption coefficient a

e Helmholtz or quarter-wave
resonator
0.8f
0.6f
0.4F
0.2r
= Single porosity
0 === |Nner resonators

0 1000 2000 3000 4000 5000
Frequency (Hz)
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Acoustical resonators

e Porous media with (inner) resonators

G Q
G O o )
Q c G
G D) a ©

1L
e Tortuous effect
1

Sound absorption coefficient a

e Helmholtz or quarter-wave
resonator
0.8F
- 1
Ky = 0.6F
(1 - ¢mes0) + ¢mem
3 P 0.4F
Kequicro Keqirex
2 0.2F
1% _ 4 = Single porosity
chﬁn’s - YPO 1- a (w) = |nner resonators
res % 1000 2000 3000 4000 5000

Frequency (Hz)
H. Helmholtz, “Theorie der Luftschwingungen in Rohren mit offenen Enden.” Crelle’s Journal fiir die reine und angewandte Mathematik 57(1), 1-72
(1860)
C. Boutin, "Acoustics of porous media with inner resonators",J. Acoust. Soc. Am. 134(6), 4717-4730 (2013)
J.-P. Groby, W. Lauriks, T.E. Vigran, "Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating",J.
Acoust. Soc. Am. 127(5), 2865-2874 (2010)
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Soft membranes

e Rigid membranes are known
to increase the airflow resistivity
as well as the tortuosity
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Soft membranes

- ] i
= [l
e 2 08
e Rigid membranes are known £ :
. . P z "
to increase the airflow resistivity ¢ °° o
o

as well as the tortuosity

e The use of soft membranes
allows a permeo-elastic cou-
p||ng o] 1 2 3 4 5 6

Frequency (kHz)

Absorption coefficient

FIG. 3. Measured absorption versus frequency for open cell foams (O1 and
02, black symbols) and closed-cell foams (C1 and C2, green symbols).
Samples were 2cm thick. Reproducibility was tested by measuring 2 sam-
ples of each type (solid and open symbols). Solid black lines show JCAL
model for the open-cell foams.

C. Gaulon, J. Pierre, C. Derec, L. Jaouen, F.-X. Bécot, F. Chevillotte, F. Elias, W. Drenckhan, and V. Leroy, "Acoustic absorption of solid foams with
thin membranes.", Appl. Phys. Lett. 112(261904), (2018)
R. Venegas, C. Boutin, "Acoustics of permeo-elastics materials.",J. Fluid Mech. 828 135-174, (2017)
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Periodicity

e Porous media with periodic solid inclusions

e 6 06 06 6 0 0 o
e 06 6 06 06 0 0 o
e 6 6 6 6 6 o o
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Periodicity

e Porous media with periodic solid inclusions

e 6 06 06 6 0 0 o
e 06 6 06 06 0 0 o
e 6 6 6 6 6 o o

e Tortuous effect
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Periodicity

e Porous media with periodic solid inclusions

e 6 06 06 6 0 0 o
e 06 6 06 06 0 0 o
e 6 6 6 6 6 o o

o Tortuous effect
e Bragg interferences
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Periodicity

e Porous media with periodic solid inclusions

e 6 06 06 6 0 0 o
e 06 6 06 06 0 0 o
e 6 6 6 6 6 o o

e Tortuous effect

10 Sound absorption coefficient a (NI)

e Bragg interferences

= Single porosity

0.2 = Solid inclusions

= Periodic solid inclusions
Bragg frequency

0‘00 1000 2000 3000 4000 kSD‘OD 6000 7000 8000
Frequency (Hz)
icaj L ission Loss (NI)
e The waves are reflected, not dissi- ransmission Loss
pated! 20
15
10
5
0

1000 2000 3000 4000 5000 6000 7000 8000
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Impedance matching

e The impedance matching
principle consists in gradually
modify the impedance to tend
towards zero reflection
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Impedance matching

e The impedance matching
principle consists in gradually
modify the impedance to tend
towards zero reflection

e Generally achieved by
modyfing the topology

1 0WSound Absorption Coefficient a

0.8
0.6
0.4
0.2
= single layer - 500 mm thick
—— 5 layers - 500 mm thick
0.0

0 1000 2000 3000 4000 5000
Frequency (Hz)
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Impedance matching

e The impedance matching
principle consists in gradually
modify the impedance to tend
towards zero reflection

e Generally achieved by
modyfing the topology

<

e Functionnally graded mate-
rials are also good candidates

10 §ound Absorption Coefficient a

0.8
0.6
0.4
0.2
= single layer - 500 mm thick
—— 5 layers - 500 mm thick
0.0

0 1000 2000 3000 4000 5000
Frequency (Hz)
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Non-conventional phenomena involved in meta-materials

Summary of analytical condensed models:

&
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Non-conventional phenomena involved in meta-materials

Summary of analytical condensed models:

o Multi-scale material with diffusion processes

- Double porosity media (air inclusions) ,@

- Solid inclusions ,@
- Porous inclusions
- Sorption

Acoustical resonators @
Soft membranes
Periodicity

Impedance matching
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Non-conventional phenomena involved in meta-materials

Summary of analytical condensed models:

o Multi-scale material with diffusion processes

- Double porosity media (air inclusions) ,@

- Solid inclusions ,@
- Porous inclusions
- Sorption

Acoustical resonators @
Soft membranes
Periodicity

Impedance matching

How to condense any non-conventional effect?
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Numerical condensation

heterogeneous
—., puc ¥t
impose
L .

. periodicity

y
T™MM ¢ condensation

V() =T(w,8,p)V(x")

numerical ¢ characterization

azimuthal
angle
Peq
Keq
(Xeq)
y

equivalent
PUC

X

A. Parrinello, A., G. Ghiringhelli “Transfer matrix rep resentation for periodic planar media,” Journal of Sound and Vibration 371, 196-20, 2016
A. Parrinello, A., G. Ghiringhelli, N. Atalla “Generalized transfer matrix method for periodic planar media,” Journal of Sound and Vibration 464,
11499, 2020

A. Sreekumar, F. Chevillotte, E. Gourdon “Numerical characterization of heterogeneous meta-materials.” Forum Acusticum 2023, Turin, Italy.
Submitted to J. Acous. Soc. Am.
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Numerical condensation

e Condensed fluid matrix (inc. angle dependent, propagation along x)

cos(kyl) j)(M sin(k,l)

k .
T=| * with k, = ([k2, — k?
i— sin(k,l)  cos(k) e

J
Peqw

and k; = kysin (0)
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Numerical condensation

e Condensed fluid matrix (inc. angle dependent, propagation along x)

cos(kyl) j)(M sin(k,l)

k .
T=| * with k, = ([k2, — k?
i— sin(k,l)  cos(k) e

J
Peqw

and k; = kysin (0)
e Using the Stroh formalism:
X Peq
R
Keq Peqw2

T = exp (Al) with A = jw

X
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Numerical condensation

e Condensed fluid matrix (inc. angle dependent, propagation along x)

cos(k.d) j’% sin(k.)
T=\ & . with &, = k%, - K2
j—— sin(k,) cos(kyl)
Peqw

and k; = kysin (0)
e Using the Stroh formalism:

X Peq
T =exp(Al) with A =jow 1

5
Keq Peqw2

X
x enables to account for asymmetry

J.-P. Groby, M. Malléjac, A. Merkel, V. Romero-Garcia, V. Tournat, D. Torrent, and J. Li, "Analytical modeling of one-dimensional resonant
asymmetric and reciprocal acoustic structures as Willis materials,” New Journal of Physics 23(5), 466 053020, 2021

F. Marchetti, F. Chevillotte, "On the use of an additional parameter for thecharacterization and the condensation ofheterogeneous or non-symmetric
multilayered materials”, SAPEM, Changshu and Sorrento, China and Italy, 2023
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Numerical condensation

e Configurations and material parameters

Host Inclusion

Air Porous I Porous II Porous III Rigid

8900 - 2 x 10* 2 x 10° 2 x 107 -

[N-m-s74
@ 0.95 - 0.95 0.95 0.95 -
Qoo 1.42 - 1 1 1 -

Am] |100 x 1075| - 8.802 x 1075 2.783 x 107 2.783 x 107°
A [m]  [360 x 1075| - 8.802 x 1075 2.783 x 107> 2.783 x 107¢
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Numerical condensation

Sound absorption coefficients under DF (1/3)
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Numerical condensation

Sound absorption coefficients under DF (2/3)
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Numerical condensation

e Sound absorption coefficients under DF (3/3)
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Numerical condensation

e Pressure fields @ 3064 Hz (1/3)
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Numerical condensation

e Pressure fields @ 3064 Hz (2/3)
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Numerical condensation

e Pressure fields @ 3064 Hz (3/3)
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e The equivalent fluid formalism enables to embed complex
phenomena into condensed models (flow distorsion, pressure
diffusion, inner resonance, ...).
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Conclusion

e The equivalent fluid formalism enables to embed complex
phenomena into condensed models (flow distorsion, pressure
diffusion, inner resonance, ...).

e Simple micro- or meso-structures can be described from analytical
formulas

e Micro-macro methods can be used when dealing with more complex
shapes

e Numerous homogeneisation models are available for
non-conventional phenomena involved in meta-materials.

e Otherwise, numerical characterization procedure can be employed.
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e This formalism is compatible with the Biot’s theory. It is thus simple
to add elastic effects, especially for transmission purposes.
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Conclusion

e This formalism is compatible with the Biot’s theory. It is thus simple
to add elastic effects, especially for transmission purposes.

e It is usable under real conditions (diffuse field, turbulent boundary
layer, rainfall excitations), for absorption or insulation purposes.

e And it is directly suitable for modeling porous media in complex
systems (using FEM method for instance).
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Thank You for your Attention!
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Composite model

e A composite model has recently been presented.
F. Chevillotte, L. Jaouen, F.-X. Bécot, "On the modeling of visco-thermal dissipations in
heterogeneous porous media",J. Acoust. Soc. Am. 138(6), 3922-3929 (2015)
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Composite model

e A composite model has recently been presented.
F. Chevillotte, L. Jaouen, F.-X. Bécot, "On the modeling of visco-thermal dissipations in

heterogeneous porous media",J. Acoust. Soc. Am. 138(6), 3922-3929 (2015)
e Consideration of the shape of the mesoscopic parts.
e Consideration of the flow distorsion.
e Consideration of the pressure diffusion effect.

_a
D

Perforated plate Usual model Porous inclusion Double porosity Composite
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Composite porous media
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Shape consideration

Visco-inertial effects

~ - LWy ~
Pshape (w) = Peq (W) [1 _,]ZG ((1))]

Gw) = |1+ =M<
27w,
_ 8/(0(1/(\,_ _ V(]b
TOpA? " ko
V= = il
p(’(/ (w)

Thermal effects
3 K., (w)

Kxhupe (w) = ]
y=0=D[1-/26 @)

G @ =1+ 1M
2 w;

7 8k(’) V,d)
M=o @ 7%
0

, K

V = ——————
p('q (Q))Cp
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Porous composite

Peq = 1 1
o + =
Peq_shape_1 Peq_shape_2

Z 1
eq — =1 =2
F dw F dw
Keqﬁshapeﬁl KeqﬁshapeﬁZ

Bmeso = ¢shapeﬁl

1- ¢meso = ¢shape_2

il 2. Miff el ’
F, et F; : Diffusion functions 2 — 1 et 1 — 2.
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Consideration of diffusion and flow distorsion

Weighting functions

A

T T
10" 10 10" 10
kO_host / k0_<:Iient
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Perforated plate
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e Validation with flow distorsion.
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Perforated plate
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e Validation with flow distorsion.
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Perforated plate
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e Validation with flow distorsion.
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Perforated plate
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e Validation with flow distorsion.
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Double porosity media
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e Validation with diffusion.
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Double porosity media
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Double porosity media
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Porous composite - simple shape
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o Validation with diffusion between porous media.
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Porous composite - simple shape
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Porous composite - simple shape
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Porous composite - simple shape
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Porous composite - complex shape
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Porous composite - complex shape
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Porous composite - complex shape
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Porous composite - complex shape
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Porous composite - Transmission
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e Consideration for elastic effects:

J. C. Halpin , J. L. Kardos , "The Halpin-Tsai equations: A review", Polymer Engineering and
Science, 16 (5), 344 - 352 1976).
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Porous composite - Transmission
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Porous composite - Transmission
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e Consideration for elastic effects:

J. C. Halpin , J. L. Kardos , "The Halpin-Tsai equations: A review", Polymer Engineering and
Science, 16 (5), 344 - 352 1976).
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Porous composite - Transmission
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e Consideration for elastic effects:

J. C. Halpin , J. L. Kardos , "The Halpin-Tsai equations: A review", Polymer Engineering and
Science, 16 (5), 344 - 352 1976).
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Experimental validation
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Examples with shape consideration

o Modified perforated plates.
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Examples with shape consideration

e Inner resonators.

.%o
'I. (J

Validation examples
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C. Boutin, "Acoustics of rigid porous media with inner resonators”, J. Acoust. Soc. Am. 134 , 4717

(2013).
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added to the structure
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¢ Mechanical resonators can also be
added to the structure

e Spring-mass resonators

v
e
Figure 2. Considered elastic waveguide: 2D periodic lattice (left); unit cell (right).

F. Tateo, J. Michielsen, I. Lopez Arteaga, and H. Nijmeijer. “Resonant lat-
tices for low-frequency vibro-acoustic control.” In Novem, Dubrovnik, Croa-
tia, 2015.
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Alternative concepts

e Mechanical resonators can also be s Bending mode resonators

added to the structure

e Spring-mass resonators o
C. Claeys, E. Deckers, B. Pluylmers, and W. Desmet. “A lightweight vibro-

acoustic metamaterial demonstrator: numerical and experimental investi-

gation.” In Novem, Dubrovnik, Croatia, 2015.

v
e
Figure 2. Considered elastic waveguide: 2D periodic lattice (left); unit cell (right).

F. Tateo, J. Michielsen, I. Lopez Arteaga, and H. Nijmeijer. “Resonant lat-
tices for low-frequency vibro-acoustic control.” In Novem, Dubrovnik, Croa-
tia, 2015.
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Alternative concepts

e Mechanical resonators can also be s Bending mode resonators

added to the structure
b @ ‘@59 j\@ 'L.EF

e Spring-mass resonators o
C. Claeys, E. Deckers, B. Pluylmers, and W. Desmet. “A lightweight vibro-
acoustic metamaterial demonstrator: numerical and experimental investi-

gation.” In Novem, Dubrovnik, Croatia, 2015.

¢ Non-linear mechanical resonators

Figure 2. Considered elastic waveguide: 2D periodic lattice (left); unit cell (right).

F. Tateo, J. Michielsen, I. Lopez Arteaga, and H. Nijmeijer. “Resonant lat-
tices for low-frequency vibro-acoustic control.” In Novem, Dubrovnik, Croa-
tia, 2015.

F. Vakakis and O. Gendelman. “Energy pumping in nonlinear mechani-
cal oscillators: Part ii -resonance capture.” ASME. J. Appl. Mech., 68(1):
42-48, 2000.

E. Gourdon, N. A. Alexander, C. A. Taylor, C. H. Lamarque, and S. Pernot.
“Nonlinear energy pumping under transient forcing with strongly nonlinear
coupling: Theoretical and experimental results.” J. Sound Vib., 300(3-5):
522-551, 2007.
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Alternative concepts

e Impedance matching concept applied to structural vibrations
(« Acoustic Black Hole » )

C. L. Pekeris. “Theory of Propagation of Sound in a Half-Space of Variable Sound Velocity under Conditions of Formation of a Shadow Zone.” J.
Acoust. Soc. Am., 18 :295-315, 1946.

V. B. Georgiev, J. Cuenca, F. Gautier, L. Simon, and V. V. Krylov. “Damping of structural vibrations in beams and elliptical plates using the acoustic
black hole effect.” J. Sound Vib., 330 :2497-2508, 2011.
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Alternative concepts

e Impedance matching concept applied to structural vibrations
(« Acoustic Black Hole » )

C. L. Pekeris. “Theory of Propagation of Sound in a Half-Space of Variable Sound Velocity under Conditions of Formation of a Shadow Zone.” J.
Acoust. Soc. Am., 18 :295-315, 1946.

V. B. Georgiev, J. Cuenca, F. Gautier, L. Simon, and V. V. Krylov. “Damping of structural vibrations in beams and elliptical plates using the acoustic
black hole effect.” J. Sound Vib., 330 :2497-2508, 2011.

o Meta-material for underwater acoustics are mainly based on solid
visco-elastic matrix with soft inclusions)

Sharma, G. S., Skvortsov, A., IMacGillivray, |., and Kessissoglou, N.. “Sound Transmission through a Periodically Voided Soft Elastic Medium
Submerged in Water.” Wave Motion, Recent Advances on Wave Motion in Fluids and Solids, 70 (April 1, 2017): 101-12.
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