Statistical characterisation of porous media from sound absorption and ultrasound transmission

Jacques Cuenca¹, Tomás S. Gómez Méndez², Naima Sebaa³, David Jun^{4,5}, Laurent De Ryck¹, Christ Glorieux²

- ¹ Siemens Industry Software, Leuven, Belgium
- 2 KU Leuven, Department of Physics and Astronomy, Laboratory for Acoustics Soft Matter and Biophysics, Heverlee, Belgium
- ³ École Nationale Supérieure des Technologies Avancées, Algiers, Algeria
- ⁴ Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
- ⁵ KU Leuven, Department of Architecture, Campus Brussels and Ghent, Belgium

Previous work

J. Cuenca^a, P. Göransson^{b,*}, L. De Ryck^a, T. Lähivaara^c

^a Siemens Industry Software, Interleuvenlaan 68, BE-3001 Leuven, Belgium

^b Department of Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, Teknikringen 8, SE-10044 Stockholm, Sweden

^c Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland

ARTICLE INFO

ABSTRACT

Communicated by Annie Ross

Keywords-Poroelastic media Parameter estimation Coupled problems

This paper proposes a framework for the estimation of the transport and elastic properties of open-cell poroelastic media based on sound absorption measurements. The sought properties are the Biot-Johnson-Champoux-Allard model parameters, namely five transport parameters, two elastic properties and the mass density, as well as the sample thickness. The methodology relies on a multi-observation approach, consisting in combining multiple independent measurements

2/13J. Cuenca (jacques. cuenca@sigmens.com) Statistical characterisation of free dataset, with the aim of such the

Previous work

22

7

Previous work

Motivation and goal

Motivation

More equations for the same unknowns Less uncertainty

Idea

Combine measurement data from different frequency ranges

Introduction

Numerical tests

Motivation and goal

Motivation

More equations for the same unknowns \downarrow Less uncertainty

Idea

Combine measurement data from different frequency ranges

Motivation and goal

Motivation

More equations for the same unknowns Less uncertainty

Idea

Combine measurement data from different frequency ranges

Model and setup

Inverse problem

Numerical tests

Experiments

Closing remarks

Model and setup

Inverse problem

Numerical tests

Experiments

Closing remarks

Model and setup

Porous material model

Johnson-Champoux-Allard-Lafarge model e.g. with log-normal pore-size distribution parameterisation*

$$\begin{split} \xi &= \mathbf{e}^{(\sigma_{\mathfrak{s}} \log 2)^2} & \Lambda &= \overline{\mathfrak{s}} \xi^{-5/2} & \kappa_0 &= \frac{\overline{\mathfrak{s}}^2 \phi}{8 \alpha_{\infty} \infty} \xi^{-6} \\ \alpha_{\infty} &= \xi^4 & \Lambda' &= \overline{\mathfrak{s}} \xi^{3/2} & \kappa_0' &= \frac{\overline{\mathfrak{s}}^2 \phi}{8 \alpha_{\infty}} \xi^6 \end{split}$$

$$\mathbf{x} = \{\phi, \bar{s}, \sigma_s\}$$

^{*} Horoshenkov, Hurrell, Groby. JASA 145 (2019) 2512

Model and setup

Porous material model

Johnson-Champoux-Allard-Lafarge model e.g. with log-normal pore-size distribution parameterisation*

$$\begin{split} \xi &= e^{(\sigma_s \log 2)^2} & \Lambda &= \overline{s}\xi^{-5/2} & \kappa_0 &= \frac{\overline{s}^2 \phi}{8\alpha \infty} \xi^{-6} \\ \alpha_\infty &= \xi^4 & \Lambda' &= \overline{s}\xi^{3/2} & \kappa'_0 &= \frac{\overline{s}^2 \phi}{8\alpha \infty} \xi^6 \end{split}$$

Experimental setups

Unknowns

$$\mathbf{x} = \{\phi, \overline{s}, \sigma_s\}$$

Measurement data

* Horoshenkov, Hurrell, Groby. JASA 145 (2019) 2512

Model and setup

Porous material model

Johnson-Champoux-Allard-Lafarge model e.g. with log-normal pore-size distribution parameterisation*

$$\begin{split} \xi &= e^{(\sigma_s \log 2)^2} & \Lambda &= \bar{s}\xi^{-5/2} & \kappa_0 &= \frac{\bar{s}^2 \phi}{8\alpha \infty} \xi^{-6} \\ \alpha_\infty &= \xi^4 & \Lambda' &= \bar{s}\xi^{3/2} & \kappa'_0 &= \frac{\bar{s}^2 \phi}{8\alpha \infty} \xi^6 \end{split}$$

Experimental setups

Unknowns

$$\mathbf{x} = \{\phi, \overline{s}, \sigma_s\}$$

Measurement data

* Horoshenkov, Hurrell, Groby. JASA 145 (2019) 2512

4/13 J. Cuenca (jacques.cuenca@siemens.com) Statistical characterisation of foams

Model and setup

Inverse problem

Numerical tests

Experiments

Closing remarks

$$\alpha^{\text{meas}}(\omega) = \alpha(\omega, \mathbf{x}) + \varepsilon(\sigma_{\varepsilon})$$

measurement

model

x: unknown parameters σ_{ε}^{2} : unknown error variance

$$\alpha^{\text{meas}}(\omega)$$
 – $\alpha(\omega, \mathbf{x})$ = $\varepsilon(\sigma_{\varepsilon})$

measurement

model

x: unknown parameters σ_{ε}^{2} : unknown error variance

$$\alpha^{\text{meas}}(\omega)$$
 – $\alpha(\omega, \mathbf{x})$ = $\varepsilon(\sigma_{\varepsilon})$

۰۰۰٬۰۰۰ error **x**: unknown parameters σ_{ε}^{2} : unknown error variance

Likelihood:

 $P(\boldsymbol{\alpha}^{\mathsf{meas}}|\mathbf{x}) = P_{\varepsilon}$

x: unknown parameters σ_{ε}^2 : unknown error variance σ_{μ}^2 : unknown error variance

Likelihood:

 $P(\boldsymbol{lpha}^{\mathsf{meas}}|\mathbf{x}) = P_{arepsilon}$

$$P(au^{\mathsf{meas}}|\mathbf{x}) = P_{\mu}$$

$$P(\alpha^{\text{meas}}|\mathbf{x}) = P_{\varepsilon} = \frac{\exp(-\frac{1}{2}\varepsilon^{T}\mathbf{r}_{\varepsilon}^{-1}\varepsilon)}{\sqrt{(2\pi)^{M}\det(\Gamma_{\varepsilon})}} \implies P(\mathbf{x}|\alpha^{\text{meas}},\tau^{\text{meas}}) \propto P(\alpha^{\text{meas}}|\mathbf{x})P(\tau^{\text{meas}}|\mathbf{x}) P(\tau^{\text{meas}}|\mathbf{x}) P(\tau^$$

Likelihood:

Posterior:

5/13 J. Cuenca (jacques.cuenca@siemens.com) Statistical characterisation of foams

Solution strategy

Posterior

$$P(\mathbf{x}|\boldsymbol{\alpha}^{\text{meas}}, \boldsymbol{\tau}^{\text{meas}}) = \frac{\exp\left(-\frac{\sum_{m=1}^{M}|\boldsymbol{\alpha}_{m}^{\text{meas}} - \boldsymbol{\alpha}_{m}(\mathbf{x})|^{2}}{2\sigma_{e}^{2}} - \frac{\sum_{n=1}^{N}|\boldsymbol{\tau}_{n}^{\text{meas}} - \boldsymbol{\tau}_{n}(\mathbf{x})|^{2}}{2\sigma_{\mu}^{2}}\right)}{\sqrt{(2\pi\sigma_{e}^{2}\sigma_{\mu}^{2})^{(M+N)}}}P(\mathbf{x})$$

Unknowns

$$\mathbf{x} = \{\phi, \overline{s}, \sigma_s, \sigma_\varepsilon, \sigma_\mu\}$$

(Hyperparameters $\sigma_{arepsilon}$ and σ_{μ} have uniform hyperpriors)

Inverse problem

Numerical tests

Solution strategy

Posterior

$$P(\mathbf{x}|\boldsymbol{\alpha}^{\text{meas}}, \boldsymbol{\tau}^{\text{meas}}) = \frac{\exp\left(-\frac{\sum_{m=1}^{M} |\boldsymbol{\alpha}_{m}^{\text{meas}} - \boldsymbol{\alpha}_{m}(\mathbf{x})|^{2}}{2\sigma_{\varepsilon}^{2}} - \frac{\sum_{n=1}^{N} |\boldsymbol{\tau}_{n}^{\text{meas}} - \boldsymbol{\tau}_{n}(\mathbf{x})|^{2}}{2\sigma_{\mu}^{2}}\right)}{\sqrt{(2\pi\sigma_{\varepsilon}^{2}\sigma_{\mu}^{2})^{(M+N)}}}P(\mathbf{x})$$

Unknowns

$$\mathbf{x} = \{\phi, \overline{s}, \sigma_s, \sigma_\varepsilon, \sigma_\mu\}$$

(Hyperparameters $\sigma_{arepsilon}$ and σ_{μ} have uniform hyperpriors)

1. Sampling of the posterior

Metropolis-Hastings algorithm with adaptive proposal*

 \Rightarrow Markov chain = approximation of target distribution

^{*} Haario, Saksman, Tamminen. Bernoulli 7 (2001) 223-242

^{6/13} J. Cuenca (jacques.cuenca@siemens.com) Statistical characterisation of foams

Solution strategy

Posterior

$$P(\mathbf{x}|\boldsymbol{\alpha}^{\text{meas}}, \tau^{\text{meas}}) = \frac{\exp\left(-\frac{\sum_{m=1}^{M} |\boldsymbol{\alpha}_{m}^{\text{meas}} - \boldsymbol{\alpha}_{m}(\mathbf{x})|^{2}}{2\sigma_{e}^{2}} - \frac{\sum_{n=1}^{N} |\boldsymbol{\tau}_{n}^{\text{meas}} - \boldsymbol{\tau}_{n}(\mathbf{x})|^{2}}{2\sigma_{\mu}^{2}}\right)}{\sqrt{(2\pi\sigma_{e}^{2}\sigma_{\mu}^{2})^{(M+N)}}}P(\mathbf{x})$$

0. Initial estimate

Deterministic solution using differential evolution[†]

$$\mathbf{x}^{(\text{init})} = \underset{\mathbf{x}:P(\mathbf{x})}{\arg\min} \left(\sum_{m=1}^{M} \left| \alpha_m^{\text{meas}} - \alpha_m(\mathbf{x}) \right|^2, \sum_{n=1}^{N} \left| \tau_n^{\text{meas}} - \tau_n(\mathbf{x}) \right|^2 \right)$$

1. Sampling of the posterior

Metropolis-Hastings algorithm with adaptive proposal*

 \Rightarrow Markov chain = approximation of target distribution

Unknowns

$$\mathbf{x} = \{\phi, \overline{s}, \sigma_s, \ \sigma_\varepsilon, \sigma_\mu\}$$

(Hyperparameters $\sigma_{arepsilon}$ and σ_{μ} have uniform hyperpriors)

[†] Storn and Price. J Global Optim 11 (1997) 341-359

^{*} Haario, Saksman, Tamminen. Bernoulli 7 (2001) 223-242

^{6/13} J. Cuenca (jacques.cuenca@siemens.com) Statistical characterisation of foams

Solution strategy

Posterior

$$P(\mathbf{x}|\boldsymbol{\alpha}^{\text{meas}}, \tau^{\text{meas}}) = \frac{\exp\left(-\frac{\sum_{m=1}^{M} |\boldsymbol{\alpha}_{m}^{\text{meas}} - \boldsymbol{\alpha}_{m}(\mathbf{x})|^{2}}{2\sigma_{\varepsilon}^{2}} - \frac{\sum_{n=1}^{N} |\boldsymbol{\tau}_{n}^{\text{meas}} - \boldsymbol{\tau}_{n}(\mathbf{x})|^{2}}{2\sigma_{\mu}^{2}}\right)}{\sqrt{(2\pi\sigma_{\varepsilon}^{2}\sigma_{\mu}^{2})^{(M+N)}}}P(\mathbf{x})$$

0. Initial estimate

Deterministic solution using differential evolution †

$$\mathbf{x}^{(\text{init})} = \arg\min_{\mathbf{x}: P(\mathbf{x})} \left(\sum_{m=1}^{M} \left| \alpha_m^{\text{meas}} - \alpha_m(\mathbf{x}) \right|^2, \sum_{n=1}^{N} \left| \tau_n^{\text{meas}} - \tau_n(\mathbf{x}) \right|^2 \right)$$

1. Sampling of the posterior

Metropolis-Hastings algorithm with adaptive proposal*

 \Rightarrow Markov chain = approximation of target distribution

Unknowns

$$\mathbf{x} = \{\phi, \overline{s}, \sigma_s, \ \sigma_\varepsilon, \sigma_\mu\}$$

(Hyperparameters σ_{ε} and σ_{μ} have uniform hyperpriors)

2. Post-processing

Point estimates, e.g.:

- Maximum a posteriori estimate x^(MAP)
- Conditional mean estimate x^(CM)
- Median estimate x^(med)

Uncertainty ranges:

• Credible intervals (e.g. 95%)

[†] Storn and Price. J Global Optim 11 (1997) 341-359

^{*} Haario, Saksman, Tamminen. Bernoulli 7 (2001) 223-242

Model and setup

Inverse problem

Numerical tests

Experiments

Closing remarks

Numerical example 1: compatible model

Unknowns

Pore-size distribution model parameters

Numerical example 1: compatible model

Results

Unknowns

Pore-size distribution model parameters

 $\mathbf{x} = \{\phi, \overline{s}, \sigma_s\}$

7/13 J. Cuenca (jacques.cuenca@siemens.com) Statistical characterisation of foams

Numerical example 1: compatible model

Results

Unknowns

Pore-size distribution model parameters

 $\mathbf{x} = \{\phi, \overline{s}, \sigma_s\}$

7/13 J. Cuenca (jacques.cuenca@siemens.com) Statistical characterisation of foams

Numerical example 2: incompatible model

Unknowns

Pore-size distribution model parameters

Numerical example 2: incompatible model

Post

Unknowns

Pore-size distribution model parameters

Numerical example 2: incompatible model

Unknowns

Pore-size distribution model parameters

Pareto front

Model is **incompatible** with both datasets simultaneously

Model and setup

Inverse problem

Numerical tests

Experiments

Closing remarks

Setups

Sound absorption measurement

Ultrasound transmission measurement

f (kHz)

Preliminary experimental results

Tested material

 $\begin{array}{l} \mbox{Melamine foam} \\ \mbox{Thickness} = 50 \mbox{ mm (impedance tube)} \\ \mbox{Thickness} = 50 \mbox{ mm (ultrasound)} \end{array}$

Unknowns

Johnson-Champoux-Allard-Lafarge model

$$\mathbf{x} = \{\phi, \alpha_{\infty}, \Lambda, \Lambda' / \Lambda, \sigma, \kappa'_0\}$$

Unknowns

Johnson-Champoux-Allard-Lafarge model

$$\mathbf{x} = \{\phi, \alpha_{\infty}, \Lambda, \Lambda' / \Lambda, \sigma, \kappa'_0\}$$

Unknowns

Johnson-Champoux-Allard-Lafarge model

$$\mathbf{x} = \{\phi, \alpha_{\infty}, \Lambda, \Lambda' / \Lambda, \sigma, \kappa'_0\}$$

Model and setup

Inverse problem

Numerical tests

Experiments

Closing remarks

Closing remarks

Closing remarks

Different datasets allow to look at the inverse problem from different angles

Closing remarks

Closing remarks

Closing remarks

Different datasets allow to look at the inverse problem from different anglesliterally

Closing remarks

Different datasets allow to look at the inverse problem from different anglesliterally

- Characterisation of individual samples
 ⇒ circumvent inhomogeneity
- Multi-objective Bayesian approach for the design of locally-resonant media:

Objective vs. subjective criteria

Acknowledgements

Dr. Timo Lähivaara University of Eastern Finland, Kuopio, Finland

Prof. Peter Göransson KTH Royal Institute of Technology, Stockholm, Sweden

European Commission's Horizon Europe research and innovation programme Grant agreement No. 101072415