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General motivation

@ Various acoustic structures turns out to be asymmetric

(Phys. Rev. Lett., 118: 174301, 2017)
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(Sci. Rep., 7: 13595, 2017)

@ Willis materials (wave Motion, 3:1 , 1981

(New J. Phys., 23: 053020, 2021) ! ! .
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(Nat. Commun., 8: 15625, 2017)
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Origins of Willis coupling and acoustic biani: py in acoustic als
through source-driven homogenization

Caleb E. Sieck,"> Andrea Ali,' and Michael R. Haberman™>*

What are the specific features of Willis coupling in multiphase materials?J

2/13 J.-P. Groby



Governing equations

Assume a time dependence e™'“! and a one-dimensional poroelastic medium
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where
@ 0,y is the normal stress @ u is the elastic displacement
o P = —pis the pressure field with an o w=¢ (U= u), is the fluid/elastic
opposite sign relative displacement

(J. Appl. Phys.,33: 1482-1498, 1962; Geophysics, 56: 1950-1960, 1991)

3/13 J.-P. Groby



Governing equations

Assume a time dependence e™'“! and a one-dimensional poroelastic medium
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where
e pr is the density of the saturating fluid @ Kg is the saturated (or undrained)

® p=dpr+ (1 — ¢)ps is the effective modulus

density of the poroelastic medium @ N is the dry shear modulus

@ [ is a complex and @ M is an additional elastic parameter

frequency-dependent density @ « is an elastic coupling coefficient

(J. Fluid Mech., 176: 379-402, 1987; Veirteljahrsschr. Nat.forsch. Des. Zii.: 96: 1-23, 1951; J. Acoust. Soc. Am., 102: 1995-2006, 1997)
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Solving the governing equations

Introducing the state vector W =< P, o, w,u > , the system is cast
in the form

0 0 —wzp” —wzpf
0 |0 0 —wepr  —wp B
V=G - —aC 0 0 W=Aaw,
—aC C 0 0
_ Ke + &Y - 1
with Cr = 3 and C = .
"7 M(Ke + ) — 22 (Ke + ) —a2M

The solution is
W(l) = T,W(0) = expm (Al) W(0),
where expm (B) is the matrix exponential of B.
(Geophysics, 56: 1950-1960, 1991; J. Eng. Mech., 132: 519-531, 2006)
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Derivation of the effective parameters

lo I
- >
We assume a one-dimensional reciprocal and asymmetric

system composed of a d-periodic repetition of a two-layer A,
poroelastic unit-cell of respective propagation matrix A..

d O
W(d)= T, T,W(0) = expm (Axh)expm (A1) W(0) = expm (A.d) W(0).
The problem reduces to
expm (A.d) = expm (Axh) expm (AL h),

the solution of which is the Baker-Campbell-Hausdorff formula

1
A.d = Ach+ Al + = (AshAil — AihAsh)+---.
N— 2

first-order homogenization

(J. Math. Phys., 3: 771-777, 1962; Proc. R. Soc. A: Math. Phys. Eng. Sci., 469: 20130240, 2013)
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The effective parameters in details

The propagator matrix reads as
—w?pe  —wpre

0
AH ~ B _ _Wz/)fe _w2/)e
e Cre —a.Ce ’
B B 0
—a.C. C.
where . .
- _ Pih+poh = prh+ppk
Ofe d

d
p1h + p2h

Pe = d
6,’1/1 + 6{2/2 o751 61/1 + (}262/2

C_‘e - leLe —
" el /
= + Cohp
C. = ~10 T 222
d
to first-order.
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The effective parameters in details

The propagator matrix reads as

—w?pe  —wpre
—iw ) )
A ~ - ~ —W P —WPe
‘ Cre —aeCe ’
B _ iww, T
—o0.C. C.
where
- —iw/llz
- 2d ’

with o - _ .
=mnC, — Gy + proa Cl_— pfl(y,z_Q

= Po0vg €1 —pa2G+pa G —pr G
= p2a1C — proo G + pf, G — pp, Gy
=pra1C — praa G+ p1 G — p2 G

including second-order terms.
(J. Mech. Phys. Solids, 77: 158-178, 2015)
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Effect of the viscous losses (Darcy's law)

We assume the skeleton is motionless. The state vector becomes
wef =< p,V >=< p,oU > and the equation of motion reduces to

7wef = iw { T ﬁ:f } Wt’:’f — AefWef

with

iwhl = = —hbn (¢ :
= lwdl 2 (/71 Cro — /~)2Cf1) — 127 (02 — Ol)

w—0 C/Po K01 K02
ef _ P1h + p2h in [ h b
= = H -
Pe d w—0 dw K01 + R02 ’
- Crih + Cral 1
o Crah ol )
Ce = d b ap (htozk),

where rq;, j = 1,2, are the viscous permeabilities and Py and 7 are
parameters of the saturating fluid.

The Willis coupling does not vanish at low frequency! )

(Wave Motion, 110: 102892, 2022)
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Effect of the viscous losses (Darcy's law)

We assume the skeleton is motionless. The state vector becomes
We =< p,V >=< p,»U > and the equation of motion reduces to

aﬁwef :iw[ _CEf pef } we = A wel
X fe

BUT

ke = e Cf 4+ (v )? — kil =i Cf
w—0

Zf-ﬁ?/( pefCel + (VY ) — ZJ =i/ CE

The laminate structure falls back to symmetric at low frequency when viscous
losses are accounted for, although the Willis coupling does not vanish! J
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Numerical example and validation

lo Iy
- >
We consider a laminated poroelastic structure composed of

two air-saturated poroelastic layers. The layer thicknesses A,
are h = h =1cm, suchthatd =4 + b =2 cm.

xr
d
| ¢ Too A (um) N (um) ko (m?) kg (m?) Ks (1 +i¢) (kPa) v Ps
M1 | 095 1.1 15 45 44%x10°° 53x10° D 445 — i22 0.24 2520
M2 | 096 2.2 110 352 2x107° 2.5 x 107° 83 — i4 0.21 925

Once the total transfer matrix T, = expm (AL"d) is calculated, we immediately
end up with

1 1
AL = ~logm (Ty) = EVdiag(Iog(/\i))V_l,
where A% are the eigenvalues of T, and V the eigenvector matrix.

(Proc. R. Soc. A, 467: 1749-69, 2011)
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The effective properties
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Closed-form expressions are valid up to «. deviates from 1. J
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The effective properties
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The scattering coefficients
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The scattering coefficients
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Conclusion and perspectives

@ Closed form expressions of the effective properties of a two-layer
poroelastic unit-cell material, including Willis coupling, are derived
via the Baker-Campbell-Hausdorff formula

o Closed form expressions are valid up to «. deviates from 1 when
satuated by light fluid

o Willis coupling do not vanish at low frequency because of the
Darcy's law

o The asymmetric structure falls back to symmetric at low frequency
thanks to the Darcy's law

@ Frequency range of validity of the scattering coefficients is wider
when the Willis coupling matrix is taken into account than in its
absence

@ Acoustic wave control by multiphase asymmetric materials
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