Willis coupling in one-dimensional poroelastic laminates

J.-P. Groby

Laboratoire d'Acoustique de l'Université du Mans, UMR CNRS 6613 (LAUM), Le Mans, France

webpage: http://perso.univ-lemans.fr/~jpgroby/

in collaboration with.

Michael R. Haberman Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA

Symposium on the Acoustics of Poro-Elastic Materials - SAPEM'23

Institut d'Acoustique Graduate School Le Mans Université

J.-P. Groby

General motivation

• Various acoustic structures turns out to be asymmetric

• Willis materials (Wave Motion, 3:1, 1981)

Caleb F. Sieck, 1,2 Andrea Alù, 1 and Michael R. Haberman 3,2,*

What are the specific features of Willis coupling in multiphase materials?

Governing equations

Assume a time dependence $e^{-i\omega t}$ and a one-dimensional poroelastic medium

$$\begin{aligned} -\frac{\partial \sigma_{xx}}{\partial x} &= \omega^2 \rho_f w + \omega^2 \rho u, \\ -\frac{\bar{P}}{\partial x} &= \omega^2 \rho_f w + \omega^2 \tilde{\rho} w, \\ (\kappa_G + \frac{4N}{3}) \frac{\partial u}{\partial x} + \alpha M \frac{\partial w}{\partial x} &= \sigma_{xx}, \\ \alpha M \frac{\partial u}{\partial x} + M \frac{\partial w}{\partial x} &= \bar{P}, \end{aligned}$$

where

- σ_{xx} is the normal stress
- $\overline{P} = -p$ is the pressure field with an opposite sign
- *u* is the elastic displacement
- $w = \phi (U u)$, is the fluid/elastic relative displacement

(J. Appl. Phys., 33: 1482-1498, 1962; Geophysics, 56: 1950-1960, 1991)

Governing equations

Assume a time dependence $e^{-i\omega t}$ and a one-dimensional poroelastic medium

$$\begin{cases} -\frac{\partial \sigma_{xx}}{\partial x} = \omega^2 \rho_f \mathbf{w} + \omega^2 \rho u, \\ -\frac{\bar{P}}{\partial x} = \omega^2 \rho_f \mathbf{w} + \omega^2 \tilde{\rho} \mathbf{w}, \\ (\kappa_G + \frac{4N}{3}) \frac{\partial u}{\partial x} + \alpha M \frac{\partial \mathbf{w}}{\partial x} = \sigma_{xx}, \\ \alpha M \frac{\partial u}{\partial x} + M \frac{\partial \mathbf{w}}{\partial x} = \bar{P}, \end{cases}$$

where

- ρ_f is the density of the saturating fluid
- $\rho = \phi \rho_f + (1 \phi) \rho_s$ is the effective density of the poroelastic medium
- ρ̃ is a complex and frequency-dependent density

- *K_G* is the saturated (or undrained) modulus
- N is the dry shear modulus
- *M* is an additional elastic parameter
- α is an elastic coupling coefficient

(J. Fluid Mech., 176: 379-402, 1987; Veirteljahrsschr. Nat.forsch. Des. Zü.: 96: 1-23, 1951; J. Acoust. Soc. Am., 102: 1995-2006, 1997)

J.-P. Groby

Solving the governing equations

Introducing the state vector $\pmb{W}=<\bar{P},\sigma_{\rm xx},w,u>^T$, the system is cast in the form

$$\frac{\partial}{\partial x} \mathbf{W} = \begin{bmatrix} 0 & 0 & -\omega^2 \tilde{\rho} & -\omega^2 \rho_f \\ 0 & 0 & -\omega^2 \rho_f & -\omega^2 \rho \\ \bar{C}_f & -\alpha \bar{C} & 0 & 0 \\ -\alpha \bar{C} & \bar{C} & 0 & 0 \end{bmatrix} \mathbf{W} = \mathbf{A} \mathbf{W},$$

with
$$\bar{C}_f = \frac{K_G + \frac{4N}{3}}{M(K_G + \frac{4N}{3}) - \alpha^2 M^2}$$
 and $\bar{C} = \frac{1}{(K_G + \frac{4N}{3}) - \alpha^2 M}$.

The solution is

$$\boldsymbol{W}(l) = \boldsymbol{T}_l \boldsymbol{W}(0) = \operatorname{expm} (\boldsymbol{A}l) \boldsymbol{W}(0),$$

where $\operatorname{expm}(B)$ is the matrix exponential of B.

(Geophysics, 56: 1950-1960, 1991; J. Eng. Mech., 132: 519-531, 2006)

Derivation of the effective parameters

We assume a one-dimensional reciprocal and asymmetric system composed of a *d*-periodic repetition of a two-layer poroelastic unit-cell of respective propagation matrix A_e .

$$\boldsymbol{W}(d) = \boldsymbol{T}_{l_2} \boldsymbol{T}_{l_1} \boldsymbol{W}(0) = \operatorname{expm} \left(\boldsymbol{A}_2 l_2 \right) \operatorname{expm} \left(\boldsymbol{A}_1 l_1 \right) \boldsymbol{W}(0) = \operatorname{expm} \left(\boldsymbol{A}_e d \right) \boldsymbol{W}(0)$$

The problem reduces to

$$\operatorname{expm}(\boldsymbol{A}_{e}\boldsymbol{d}) = \operatorname{expm}(\boldsymbol{A}_{2}\boldsymbol{l}_{2})\operatorname{expm}(\boldsymbol{A}_{1}\boldsymbol{l}_{1}),$$

the solution of which is the Baker-Campbell-Hausdorff formula

$$\mathbf{A}_{e}d = \underbrace{\mathbf{A}_{2}l_{2} + \mathbf{A}_{1}l_{1}}_{\text{first-order homogenization}} + \underbrace{\frac{1}{2}(\mathbf{A}_{2}l_{2}\mathbf{A}_{1}l_{1} - \mathbf{A}_{1}l_{1}\mathbf{A}_{2}l_{2})}_{\text{Willis coupling}} + \cdots$$

(J. Math. Phys., 3: 771-777, 1962; Proc. R. Soc. A: Math. Phys. Eng. Sci., 469: 20130240, 2013)

The effective parameters in details

The propagator matrix reads as

$$\boldsymbol{A}_{e}^{H} \approx \begin{bmatrix} \mathbf{0} & -\omega^{2} \tilde{\rho}_{e} & -\omega^{2} \rho_{fe} \\ \mathbf{0} & -\omega^{2} \rho_{fe} & -\omega^{2} \rho_{e} \\ \bar{C}_{fe} & -\alpha_{e} \bar{C}_{e} & \mathbf{0} \\ -\alpha_{e} \bar{C}_{e} & \bar{C}_{e} & \mathbf{0} \end{bmatrix},$$

where

$$\begin{split} \tilde{\rho}_{e} &= \frac{\tilde{\rho}_{1} l_{1} + \tilde{\rho}_{2} l_{2}}{d} \qquad \rho_{fe} = \frac{\rho_{f_{1}} l_{1} + \rho_{f_{2}} l_{2}}{d} = \rho_{f} \\ \rho_{e} &= \frac{\rho_{1} l_{1} + \rho_{2} l_{2}}{d} \\ \bar{C}_{fe} &= \frac{\bar{C}_{f_{1}} l_{1} + \bar{C}_{f_{2}} l_{2}}{\bar{C}_{e}} = \frac{\alpha_{1} \bar{C}_{1} l_{1} + \alpha_{2} \bar{C}_{2} l_{2}}{d} \\ \bar{C}_{e} &= \frac{\bar{C}_{1} l_{1} + \bar{C}_{2} l_{2}}{d} \end{split}$$

to first-order.

The effective parameters in details

The propagator matrix reads as

$$\mathbf{A}_{e} \approx \begin{bmatrix} -\mathrm{i}\omega \Psi_{e} & -\omega^{2}\rho_{fe} & -\omega^{2}\rho_{fe} \\ -\mathrm{i}\omega \Psi_{e} & -\omega^{2}\rho_{fe} & -\omega^{2}\rho_{e} \\ \bar{C}_{fe} & -\alpha_{e}\bar{C}_{e} & & & \\ -\alpha_{e}\bar{C}_{e} & \bar{C}_{e} & & & & \end{bmatrix}$$

where

$$\Psi_e = \frac{-\mathrm{i}\omega l_1 l_2}{2d} \begin{bmatrix} \zeta_{11} & \zeta_{12} \\ \zeta_{21} & \zeta_{22} \end{bmatrix},$$

with

$$\begin{split} \zeta_{11} &= \tilde{\rho}_1 \bar{C}_{f_2} - \tilde{\rho}_2 \bar{C}_{f_1} + \rho_{f_2} \alpha_1 \bar{C}_1 - \rho_{f_1} \alpha_2 \bar{C}_2 \\ \zeta_{12} &= \tilde{\rho}_2 \alpha_1 \bar{C}_1 - \tilde{\rho}_1 \alpha_2 \bar{C}_2 + \rho_{f_1} \bar{C}_2 - \rho_{f_2} \bar{C}_1 \\ \zeta_{21} &= \rho_2 \alpha_1 \bar{C}_1 - \rho_1 \alpha_2 \bar{C}_2 + \rho_{f_1} \bar{C}_{f_2} - \rho_{f_2} \bar{C}_{f_1} \\ \zeta_{22} &= \rho_{f_2} \alpha_1 \bar{C}_1 - \rho_{f_1} \alpha_2 \bar{C}_2 + \rho_1 \bar{C}_2 - \rho_2 \bar{C}_1 \end{split}$$

including second-order terms.

(J. Mech. Phys. Solids, 77: 158-178, 2015)

,

Effect of the viscous losses (Darcy's law)

We assume the skeleton is motionless. The state vector becomes $W^{ef} = \langle p, V \rangle = \langle p, \phi \dot{U} \rangle$ and the equation of motion reduces to

$$\frac{\partial}{\partial x} \boldsymbol{W}^{ef} = \mathrm{i}\omega \begin{bmatrix} -\Psi_e^{ef} & \tilde{\rho}_e^{ef} \\ \bar{C}_{fe}^{ef} & \Psi_e^{ef} \end{bmatrix} \boldsymbol{W}^{ef} = \boldsymbol{A}_e^{ef} \boldsymbol{W}^{ef}$$

with

$$\begin{split} \Psi_{e}^{ef} &= \frac{\mathrm{i}\omega h_{1}h_{2}}{d} \left(\tilde{\rho}_{1}\tilde{C}_{f2} - \tilde{\rho}_{2}\tilde{C}_{f1} \right) & \longrightarrow \quad \frac{-h_{1}h_{2}\eta}{dP_{0}} \left(\frac{\phi_{2}}{\kappa_{01}} - \frac{\phi_{1}}{\kappa_{02}} \right) \\ \tilde{\rho}_{e}^{ef} &= \frac{\tilde{\rho}_{1}h_{1} + \tilde{\rho}_{2}h_{2}}{d} & \longrightarrow \quad \frac{\mathrm{i}\eta}{d\omega} \left(\frac{h_{1}}{\kappa_{01}} + \frac{h_{2}}{\kappa_{02}} \right), \\ \bar{C}_{fe}^{ef} &= \frac{\bar{C}_{f1}h_{1} + \bar{C}_{f2}h_{2}}{d} & \longrightarrow \quad \frac{1}{\omega \to 0} \quad \frac{1}{dP_{0}} \left(\phi_{1}h_{1} + \phi_{2}h_{2} \right), \end{split}$$

where κ_{0j} , j = 1, 2, are the viscous permeabilities and P_0 and η are parameters of the saturating fluid.

The Willis coupling does not vanish at low frequency!

(Wave Motion, 110: 102892, 2022)

Effect of the viscous losses (Darcy's law)

We assume the skeleton is motionless. The state vector becomes $W^{ef} = \langle p, V \rangle = \langle p, \phi \dot{U} \rangle$ and the equation of motion reduces to

$$\frac{\partial}{\partial x} \boldsymbol{W}^{ef} = \mathrm{i}\omega \begin{bmatrix} -\Psi_e^{ef} & \tilde{\rho}_e^{ef} \\ \bar{C}_{fe}^{ef} & \Psi_e^{ef} \end{bmatrix} \boldsymbol{W}^{ef} = \boldsymbol{A}_e^{ef} \boldsymbol{W}^{ef}$$

BUT

$$\begin{aligned} k_e^{ef} &= \sqrt{\tilde{\rho}_e^{ef} \, \bar{C}_{fe}^{ef} + \left(\Psi_e^{ef}\right)^2} & \longrightarrow \\ k_e^H &= \sqrt{\tilde{\rho}_e^{ef} \, \bar{C}_{fe}^{ef}} \\ Z_e^\pm &= \tilde{\rho}_e^{ef} \, / \left(\sqrt{\tilde{\rho}_e^{ef} \, \bar{C}_{fe}^{ef} + \left(\Psi_e^{ef}\right)^2} \mp \Psi_e^{ef}\right) & \longrightarrow \\ \omega \to 0 & Z_e^H &= \sqrt{\tilde{\rho}_e^{ef} \, / \bar{C}_{fe}^{ef}}, \end{aligned}$$

The laminate structure falls back to symmetric at low frequency when viscous losses are accounted for, although the Willis coupling does not vanish!

Numerical example and validation

We consider a laminated poroelastic structure composed of two air-saturated poroelastic layers. The layer thicknesses are $l_1 = l_2 = 1$ cm, such that $d = l_1 + l_2 = 2$ cm.

	ϕ	$ au_{\infty}$	λ (μ m)	$\lambda'~(\mu {\sf m})$	$k_0 ({\rm m}^2)$	$k_0' ({\rm m}^2)$	$\mathcal{K}_{b}\left(1+\mathrm{i}\zeta ight)$ (kPa)	ν	ρ_s
Μ1	0.95	1.1	15	45	$4.4 imes 10^{-10}$	$5.3 imes 10^{-10}$	445 — i22	0.24	2520
M2	0.96	2.2	110	352	$2 imes 10^{-9}$	$2.5 imes10^{-9}$	83 — i4	0.21	925

Once the total transfer matrix $T_d = \exp(A_e^{num}d)$ is calculated, we immediately end up with

$$\boldsymbol{A}_{e}^{num} = rac{1}{d} ext{logm} (\boldsymbol{T}_{d}) = rac{1}{d} \boldsymbol{V} ext{diag}(ext{log}(\Lambda^{\pm})) \boldsymbol{V}^{-1},$$

where Λ^{\pm} are the eigenvalues of \mathbf{T}_d and \mathbf{V} the eigenvector matrix.

(Proc. R. Soc. A, 467: 1749-69, 2011)

The effective properties

Closed-form expressions are valid up to α_e deviates from 1.

The effective properties

Willis coupling does not vanish at low frequency.

The scattering coefficients

The scattering coefficients

Willis coupling has to be accounted for. The structure falls back to symmetric at low frequency.

- Closed form expressions of the effective properties of a two-layer poroelastic unit-cell material, including Willis coupling, are derived via the Baker-Campbell-Hausdorff formula
 - $\bullet\,$ Closed form expressions are valid up to α_e deviates from 1 when satuated by light fluid
 - Willis coupling do not vanish at low frequency because of the Darcy's law
 - The asymmetric structure falls back to symmetric at low frequency thanks to the Darcy's law
- Frequency range of validity of the scattering coefficients is wider when the Willis coupling matrix is taken into account than in its absence
- Acoustic wave control by multiphase asymmetric materials

Sil&Add

Please visit the website: https://sil-et-add.fr/en

Thank you for your attention!

This work has been funded by the ANR/RGC METARoom (ANR-18-CE08-0021) and the IA-GS (ANR-17-EURE-0014) projects.