On pulse propagation in poro-visco-elastic felt-like material

Dmitri Kartofelev, PhD Maria M. Vuin, MSc

Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of Solid Mechanics, Tallinn, Estonia

Friday, Nov. 10, 2023

Motivation

Figure: SEM images¹ of a) wool felt, b) polypropylene felt and c) carbon felt.

- Felt is a non-woven fabric (composite material) produced by wet felting natural or synthetic fibres
- Felt properties are less understood than the properties of the fibers within them
- Strain wave propagation, dispersion and dissipation through felts
- Wide range of applications

¹J. S. Winzer, *Production and Characterisation of Alumina-Copper Interpenetrating Composites*, VVB Laufersweiler Verlag, Darmstadt, Germany, 2013.

Experimental studies of wool felt and piano hammers²

Piano hammer collision dynamics: Static and dynamic testing of **piano** hammers and **felt pads**. Characterising and measuring of properties of wool felt.

²A. Stulov, A. Mägi, "Piano hammer testing device," *Proc. Estonian Acad. Sci. Engin.*, **6**(4), pp. 259–267, 2000.

D. Kartofelev, M. M. Vuin

3/17

Theoretical studies of wool felt and piano hammers^{3,4}

Figure: Typical hammer collisions lasting for t_c s. Experimental data (black) vs. fitted model data (blue).

$$F(t) = F_0 \left[w^p(t) - \frac{\gamma}{\tau} \int_0^t w^p(\xi) \exp\left(\frac{\xi - t}{\tau}\right) d\xi \right],$$
(1)

where γ is the hereditary amplitude, τ is the relaxation time, p is the compliance exponent, F_0 is the instantaneous stiffness.

³A. Stulov, "Hysteretic model of the grand piano hammer felt," *J. Acoust. Soc. Am.*, **97**(4), pp. 2577–2585, 1995.

⁴A. Stulov, "Dynamic behavior and mechanical features of wool felt," *Acta Mech.*, **169**, pp. 13–21, 2004.

Wool felt model

A hereditary visco-elastic continuum can't be described by the static Young's modulus E. Instead, the modulus is replaced by a time-dependant operator in the form $E[1 + \mathcal{R}(t)*]$ here

$$\mathcal{R}(t) = \frac{\gamma}{\tau_0} \exp\left(-\frac{t}{\tau_0}\right), \qquad 0 \leqslant \gamma < 1,$$
(2)

where γ is the hereditary amplitude and τ_0 is the relaxation time. **Constitutive relation** of the felt is proposed in the following form^{5,6}:

$$\sigma(\varepsilon) = E_{\rm d} \left[\varepsilon^p(t) - \mathcal{R}(t) * \varepsilon^p(t) \right] = E_{\rm d} \left[\varepsilon^p(t) - \frac{\gamma}{\tau_0} \int_0^t \varepsilon^p(\xi) \exp\left(\frac{\xi - t}{\tau_0}\right) \mathrm{d}\xi \right], \quad (3)$$

here E_{d} is the dynamic Young's modulus, p is the compliance exponent.

⁵D. Kartofelev, A. Stulov, "Propagation of deformation waves in wool felt," *Acta Mech*, **225**, pp. 3103–3113, 2014.

⁶D. Kartofelev, A. Stulov, "Wave propagation and dispersion in microstructured wool felt," *Wave Motion*, **57**, pp. 23–33, 2015.

D. Kartofelev, M. M. Vuin

5/17

Analysis of constitutive relation (3)

Fast loading cycle, $t_{\rm c} \ll \tau_0$:

$$\sigma(\varepsilon) = E_{\rm d}\varepsilon^p(t), \qquad (4)$$

where $E_{\rm d}$ is the dynamic Young's modulus.

Slow loading cycle, $t_c \gg \tau_0$:

$$\sigma(\varepsilon) = E_{\rm s}\varepsilon^p(t), \tag{5}$$

where $E_{\rm s}=E_{\rm d}(1-\gamma)$ is the static Young's modulus.

D. Kartofelev, M. M. Vuin

6/17

The felt model equation is derived from 1-D equation of motion

$$p\frac{\partial^2 u}{\partial t^2} = \frac{\partial\sigma}{\partial x},\tag{6}$$

where ρ is the density and u(x,t) is the displacement. Substitution of constitutive relation (3) into (6) and eliminating of the integral term leads to the following model equation:

$$\rho \frac{\partial^2 u}{\partial t^2} + \rho \tau_0 \frac{\partial^3 u}{\partial t^3} - E_{\rm d} \left\{ (1-\gamma) \frac{\partial}{\partial x} \left[\left(\frac{\partial u}{\partial x} \right)^p \right] + \tau_0 \frac{\partial^2}{\partial x \partial t} \left[\left(\frac{\partial u}{\partial x} \right)^p \right] \right\} = 0.$$
(7)

In the case of **wool felt** used in certain piano hammers, the values of physical material constants are: $E_{\rm s}=0.6$ MPa, $\rho=10^3$ kg/m³, $\gamma=0.95$, $\tau_0=10$ μ s, $1.0 . Dependent parameter values: <math>E_{\rm d}=15$ MPa, $c_{\rm s}=25$ m/s, $c_{\rm d}=125$ m/s.

Model equation: Dimensionless form

Dimensionless variables are introduced as follows:

$$u \leftarrow \frac{u}{L}, \qquad x \leftarrow \frac{x}{L}, \qquad t \leftarrow \frac{t}{T},$$
 (8)

where

$$T = \tau_0/\delta, \quad L = c_{\rm d}T\sqrt{\delta}, \quad \delta = 1 - \gamma, \quad c_{\rm d} = \sqrt{E_{\rm d}/\rho}, \quad c_{\rm s} = c_{\rm d}\sqrt{\delta}.$$
 (9)

Thus, the dimensionless form of model equation (7) in terms of strain variable $\varepsilon = \partial u / \partial x$ takes the form:

$$\varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt},$$
(10)

where p is the material compliance exponent and $\delta \in (0, 1]$ is related to all hereditary and dissipative properties. If $\delta \to 0$, i.e., $\gamma \to 1$, then the hereditary properties approach maximum levels and the dissipative properties approach minimum levels.

In the case of physical constant values shown on previous slide:

L = 6.25 mm and T = 0.25 ms.

8/17

Non-hysteretic model equations

The limit cases for rapid and slow material loading cycles.

Fast loading cycle, $t_c \ll \tau_0$:

$$\sigma(\varepsilon) = E_{\rm d}\varepsilon^p(t).$$

Model equation in dimensionless strain variable:

$$\varepsilon_{tt} = (\varepsilon^p)_{xx}.$$
 (11)

Slow loading cycle, $t_c \gg \tau_0$:

$$\sigma(\varepsilon) = E_{\rm s}\varepsilon^p(t).$$

Model equation in dimensionless strain variable:

$$\varepsilon_{tt} = \delta^2(\varepsilon^p)_{xx}.$$
 (12)

D. Kartofelev, M. M. Vuin

9/17

Dispersion analysis of model equation

The solution to model equation (10) can be assumed in the form

$$\varepsilon(x,t) \propto e^{i(kx - \Omega t)}.$$
 (13)

The **characteristic equation** that corresponds to **linearised** model equation (10) has the following form:

$$k^2 - \Omega^2 - ik^2\Omega + i\delta\Omega^3 = 0.$$
(14)

In general case angular frequency $\Omega(k)$ is a complex quantity

$$\Omega(k) = \omega(k) + i\mu(k).$$
(15)

Assumed travelling wave solution (13) can be rewritten as follows:

$$\varepsilon(x,t) \propto e^{i[kx - \Omega(k)t]} \propto e^{ikx - i\omega(k)t + \mu(k)t} \propto e^{\mu(k)t} \cdot e^{i[kx - \omega(k)t]}.$$
 (16)

It is easy to see that $\mu(k)$ acts as an exponential dissipation coefficient. The spectral components decay exponentially as $t \to \infty$ for $\mu(k) < 0$.

Dispersion and dissipation relations

$$\begin{cases} \omega(k) = \frac{\sqrt{6}}{12\delta S} \sqrt{\sqrt[3]{2}S^4 - 4S^2(1 - 3k^2\delta) + 2\sqrt[3]{4}(1 - 3k^2\delta)^2}, \\ \mu(k) = \frac{1}{12\delta S} \left[\sqrt[3]{4}S^2 - 4S + 2\sqrt[3]{2}(1 - 3k^2\delta)\right], \end{cases}$$
(17)

where

$$S = \sqrt[3]{2 - 9k^2\delta(1 - 3\delta) + 3k\delta\sqrt{3Q}},$$
(18)

$$Q = 4k^4\delta - k^2(1 + 18\delta - 27\delta^2) + 4.$$
 (19)

Three distinct regimes of solutions exist depending on the value of δ :

- 0 < δ ≤ 1/9: High hereditary properties accompanied by a band gap (BG) and a region with negative group velocity (NGV)
- **2** $1/9 < \delta < 1$: Low hereditary properties with continuous and smooth curves
- **(3)** $\delta = 1$: Non-hereditary, dispersionless case

The region with NGV exists for $0<\delta \lesssim 0.134$ and a BG exists for $0<\delta < 1/9.$

Dispersion and dissipation curves for $\delta=0.05$

Case 1: High hereditary properties. Case corresponds best to wool felt because for wool felt $\gamma=0.95.$

Figure: Dispersion and dissipation curves and corresponding phase and group velocity curves. This case features both normal $(v_{\rm ph}(k) > v_{\rm gr}(k))$ and anomalous $(v_{\rm ph}(k) < v_{\rm gr}(k))$ dispersion types.

Dispersion and dissipation curves for $\delta = 1/9 \approx 0.11$

Case at the boundary that separates Case 1 from Case 2.

Figure: Dispersion and dissipation curves and corresponding phase and group velocity curves. This case features both normal $(v_{\rm ph}(k) > v_{\rm gr}(k))$ and anomalous $(v_{\rm ph}(k) < v_{\rm gr}(k))$ dispersion types.

Dispersion and dissipation curves for $\delta=0.2$

Case 2: Low hereditary properties

Figure: Dispersion and dissipation curves and corresponding phase and group velocity curves.

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

D. Kartofelev, M. M. Vuin

Friday, Nov. 10, 2023 15 / 17

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

D. Kartofelev, M. M. Vuin

Friday, Nov. 10, 2023 15 / 17

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

D. Kartofelev, M. M. Vuin

Friday, Nov. 10, 2023 15 / 17

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

D. Kartofelev, M. M. Vuin

Friday, Nov. 10, 2023 15 / 17

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

D. Kartofelev, M. M. Vuin

Friday, Nov. 10, 2023 15 / 17

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

Initial value problem (IVP) applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x), \qquad (20)$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.015$ is the pulse width parameter, the corresponding spectral component $k \approx 2$. Resulting phase speed is δ .

D. Kartofelev, M. M. Vuin

Friday, Nov. 10, 2023 15 / 17

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

IVP applied to three models:

$$\varepsilon_{tt} = \varepsilon_{xx} + \varepsilon_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = (\varepsilon^p)_{xx} + (\varepsilon^p)_{xxt} - \delta\varepsilon_{ttt}, \qquad \varepsilon_{tt} = \delta^2 (\varepsilon^p)_{xx}, \\ \varepsilon(x, 0) = \varepsilon_0 \operatorname{sech}(\beta x),$$

where $\delta = 0.05$, p = 1.1, $\beta = 0.35$, the corresponding spectral component $k \approx 60$. Resulting phase speed is δ .

Conclusions

- An equation for modelling strain wave propagation through felt and similar materials was presented.
- Dispersion and dissipation analysis was performed. Surprisingly, dispersion curves featured a region with NGV and a BG.
- Three distinct solution behaviour regimes were identified.
- A *naive interpretation* of dispersion relation may lead to wrong conclusions about the underlying model and physics.
- Despite being predicted by the dispersion analysis the BG and NGV may not influence the wave evolution. Wave lengths related to the NGV and BG spectral components were *too big* relatively speaking. If the material loading and unloading time-scale is *much too great* in comparison to material relaxation time τ_0 , then any imaginable effects will be negligibly small. Similar masking effect also influenced the dissipation.

Acknowledgments: This work was supported by the Estonian Research Council (Grant no. PRG1227).

17 / 17

On pulse propagation in poro-visco-elastic felt-like material

Dmitri Kartofelev, PhD Maria M. Vuin, MSc

Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of Solid Mechanics, Tallinn, Estonia

Friday, Nov. 10, 2023

