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Hierarchical Porous Particles

4
Triple porosity model for granular activated carbon (GAC)

(Venegas and Umnova, 2016)

interstitial pores

mesopore

micropore

• The micropores inside the granules can
lower the speed of sound in the material,
provides larger apparent volume:

• SEM image of activated carbon (Marsh and 
Rodríguez-Reinoso, Activated Carbon, 2006)



Particle 2-D Finite Difference Modeling
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20-mm-thick glass bubble 20-mm-thick GAC

• In our previous study, with the 2-D Finite Difference method, acoustics response of 
different particles in impedance tube was successfully reconstructed 



GAC Infilled Membrane Sound Absorber
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A set of parameters was chosen so that the surface impedance predicted by the triple
porosity model matches closely to that reported in (Arenas et al., 2023):

tensioned
membrane

axis of the 
cylindrical 
container

2𝑎=10cm

8 cm

2 cm

⚫ GAC helps improve the low frequency performance.

Model predictions that closely match those in figure 2(a) and 3(b) from
Arenas et al., 2023.





Porous Granules
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• A recent study (Arenas et al., 2023) looked into the performance of an absorber 
consisting of GAC and a membrane using a 1D model

𝑟𝑝 [mm] granule radius 0.29

𝑟𝑚 [𝜇m] mesopore radius 0.1973

𝑟𝑛 [nm] micropore radius 1

𝜙𝑝 macroporosity 0.4059

𝜙𝑚 mesoporosity 0.3878

𝜙𝑛 microporosity 0.4285

𝑏 [Pa−1] Langmuir constant 4.919 × 10−7

𝐷𝑐 [m
2/s] configurational diffusivity 5 × 10−9

Arenas et al., 2023

Reproduction

Total porosity: 0.7922
Bulk density: 457 kg/m3

2 or 4 cm



Porous Granules
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Further, the stiffness of the “frame” consisting of the unconsolidated granules was
accounted for by applying Biot theory (poroelastic model).

The governing equations can be found in (Biot,
1956):

𝑁∇2𝐮 + ∇ 𝐴 + 𝑁 𝑒 + 𝑄𝜀 =
𝜕2

𝜕𝑡2
𝜌11𝐮 + 𝜌12𝐔

∇ 𝑄𝑒 + 𝑅𝜀 =
𝜕2

𝜕𝑡2
𝜌12𝐮 + 𝜌22𝐔

For the purpose of implementing the FD scheme,
the 𝐮 − 𝒑 formulation (Atalla et al., 1998) is applied:

∇ ⋅ ෝ𝝈𝑠 +𝜔2 ෤𝜌𝐮 + ෤𝛾∇𝑝 = 0

∇2𝑝 + 𝜔2
෤𝜌22
𝑅

𝑝 − 𝜔2
෤𝜌22
𝜙2

෤𝛾 ∇ ⋅ 𝐮 = 0

෤𝛾

෤𝜌, ෤𝜌11, ෤𝜌12, ෤𝜌22

𝐴, 𝑁, 𝑄, 𝑅

Stiffness coefficients

Density coefficients

𝐾𝑒𝑞, 𝜌𝑒𝑞



Membranes
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• Tensioned Membrane (Arenas et al., 2023):

𝑇∇2𝑤 + Δ𝑝 = 𝜌𝑠
𝜕2𝑤

𝜕𝑡2

Spatial average
1D impedance 𝑍𝑚 = 𝑗𝜔𝜌𝑠 1 −

2

𝑘𝑚𝑎

𝐽1 𝑘𝑚𝑎

𝐽0 𝑘𝑚𝑎

−1

𝑘𝑚 = 𝜔 𝜌𝑠/𝑇

• Micro-Perforated Membrane (Yoo et al., 2008)

Front side and cross-section of a micro-
perforated membrane (Yoo et al., 2008) 

𝑤 = Ω𝑑𝑓 + 1− Ω 𝑑𝑠

The displacement of a perforated membrane can be described as 
follows (Yoo et al., 2008): 

Δ𝑝 − 𝑅𝑡Ω
𝜕 𝑑𝑓 − 𝑑𝑠

𝜕𝑡
= 𝜌𝑓ℎ

𝜕2𝑑𝑓
𝜕𝑡2

Δ𝑝 + 𝑅𝑡
Ω

1 − Ω

𝜕 𝑑𝑓 − 𝑑𝑠
𝜕𝑡

= 𝐷∇4𝑑𝑠 − 𝑇∇2𝑑𝑠 + 𝜌𝑠
𝜕2𝑑𝑠
𝜕𝑡2

Flexural stiffness Tension Surface density

(Maa, 1998):

𝑍 = 𝑗𝜔𝜌0ℎ 1 −
2

𝑔 −𝑗

𝐽1 𝑔 −𝑗

𝐽0 𝑔 −𝑗

−1

, 𝑔 = 𝑟
𝜌0𝜔

𝜂



2-D Finite Difference Simulation
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external air
membrane

air gap

granules

𝑂
𝑟

𝑥

Axisymmetric axis
Fixed solid phase

Simply supported for membrane 
with flexural stiffness and tension

Uniform sound pressure input

Radius 5 cm

2D five point stencil





Membrane + Particle 1-D Simulation
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• Good match between measurements and 1D predictions
with large air gap

tensioned 
membrane

2 cm

8 cm



2-D Simulation Study
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58 mm

2 mm
Tensioned membrane:
𝜌𝑠 = 0.265 kg/m3

𝑇 = 62 × 1 + 0.005𝑗 N/m
58 mm GAC + 2 mm air gap

• It is necessary to consider the radial modes
• Radial fluid motion in granule stack dissipates 

energy: i.e., “Nearfield damping”



2-D Simulation Study
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Tensioned membrane:
𝜌𝑠 = 0.265 kg/m3

𝑇 = 55.2 × 1 + 0.005𝑗 N/m
18 mm GAC + 2 mm air gap

Tensioned membrane:
𝜌𝑠 = 0.265 kg/m3

𝑇 = 55.2 × 1 + 0.005𝑗 N/m
18 mm GAC + 12 mm air gap

• More significant impact of GAC pores with narrow gap

18 mm

2 mm

18 mm

12 mm



2-D Simulation Study
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Perforated membrane: tension + flexural stiffness + finite flow resistance
𝜌𝑠 = 0.912 kg/m3

ℎ = 0.8 mm
𝑇 = 50.04 × 1 + 0.005𝑗 N/m
Ω = 0.02
𝑟 = 0.15 mm
𝐷 = 0.1313 + 0.0007𝑗 Pa ⋅ m3

𝑅𝑡0 = 1.03 × 103 rayl
Total cavity depth: 40 mm

• GAC contributes to higher low frequency absorption
• The simulation of narrow gap predicts obvious increase at low frequency

40 mm

20 mm

20 mm
38 mm

2 mm





Conclusion
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A 2DFD model was built to simulate the performance of absorbers consisting of membrane and
porous granules:

1. The comparison between the 2DFD simulation and 1D analytical model prediction shows that it
is necessary to consider the modal response in the radial direction when separation between
membrane and granules is small

2. The simulation shows potential advantages of bringing the granules close to the membrane,
where the interaction of the membrane nearfield and the granule stack may be exploited to
increase energy dissipation and to reduce reflection

3. The simulation of the absorber with a perforated membrane shows more dramatic improvement
at low frequencies when GAC is added to the absorber

In the future, it is of interest to experimentally validate the predictions of the 2DFD model, and find
theoretical explanation of the difference with the 1D model prediction, especially when the air gap is
narrow
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