

感光

SAPEM' 23

Sorrento

Effect of Pore Size Polydispersity on Acoustic Properties of High-Porosity Solid Foams

By <u>C.T. Nguyen^{1,2}</u>, V. Langlois³, J. Guilleminot⁴, A. Duval², C. Perrot¹

¹MSME, Univ Gustave Eiffel, CNRS, F-77454 Marne-la-Vallée, France

²Trèves products, services and innovation, 51686 Reims Cedex 2, France

³Navier, Univ Gustave Eiffel, ENPC, CNRS, F-77454 Marne-la-Vallée, France

⁴Department of Civil and Environmental Engineering, Duke University, USA

Introduction & objectives

➢ Real foams

- Acoustic or thermal insulation
- Without or with membranes (very thin, $t_m \approx 0.3 \mu m$)
- Local heterogeneity in pore sizes
- High porosity ($\phi \approx 1$)

Acoustic properties

- Transport parameters/Sound absorption coefficient
- Resulting from microstructure features
- Simulation (at pore-scale): very expensive (generally)

➢Objectives

- Study the effect of pore size polydispersity on transport parameters of random foams
- Predict acoustic properties from microstructural parameters (pore size distribution, mean aperture ratio,...)

Microstructure reconstruction

- Periodic unit cell (PUC) is generated by an adaptive Laguerre tessellation¹
- Log-normal distribution of pore sizes

> Pore size polydispersity (Coefficient of variation):

• $C_d = \frac{\sigma_d}{d}$

• *d*: Average pore size; σ_d : Standard deviation.

> Aperture ratio of open windows (membranes)

Name	Cd0	Cd1	Cd2	Cd3	Cd4	Cd5	Cd6	Cd7	Cd8	Cd9	Cd10
C_d	0.030	0.107	0.198	0.285	0.366	0.440	0.511	0.574	0.646	0.689	0.730

Estimated polydispersity levels in the generated PUC microstructures

1. [Quey et al., Comput. Method Appl. M. 330, 308 (2018)].

C.T. Nguyen, Effect of pore size polydispersity on acoustic properties of high-porosity solid foams

Samples of PUC microstructures. The PUC size is normalized by pore size average, L/d = 10.

Transport parameters simulation

 \succ Static viscous permeability k_0 :

$\langle \mathbf{v} \rangle \cdot \mathbf{e}$	$\mu \Delta \mathbf{v} - \nabla p = -\nabla p \text{in} \Omega_f ,$
$k_0 = \mu \frac{\langle \cdot \rangle}{\lambda_m}$	$\nabla \mathbf{v} = 0$ in Ω_f ,
<i>i</i> m	$\mathbf{v} = 0$ on $\partial \Omega$,

 \succ High-frequency tortuosity α_{∞} and Viscous characteristic length Λ :

$$\Lambda = \frac{2 \int_{\Omega_f} \mathbf{E}^2 dV}{\int_{\partial \Omega} \mathbf{E}^2 dS} , \quad \alpha_{\infty} = \frac{\langle \mathbf{E}^2 \rangle}{\langle \mathbf{E} \rangle^2} \qquad \begin{array}{l} \nabla \cdot \mathbf{E} = 0 \quad \text{in} \quad \Omega_f ,\\ \mathbf{E} = -\nabla \varphi + \mathbf{e} \quad \text{in} \quad \Omega_f ,\\ \mathbf{E} \cdot \mathbf{n} = 0 \quad \text{on} \quad \partial \Omega , \end{array}$$

 \succ Static thermal permeability k'_0 :

$$k'_0 = \phi \langle u \rangle$$
, $\Delta u = -1$ in Ω_f ,
 $u = 0$ on $\partial \Omega$.

\succ Thermal characteristic length Λ' :

$$\Lambda' = 2 \int_{\Omega_f} dV \Big/ \int_{\partial\Omega} dS \,$$

 \geq Open porosity

- $\phi = 1$
- > Normalized transport parameters (by the average pore size d):

•
$$k_0^* = \frac{k_0}{d^2}, \ k'_0^* = \frac{k'_0}{d^2}$$

• $\Lambda^* = \frac{\Lambda}{d}, \ \Lambda'^* = \frac{\Lambda'}{d}$

- ιm $- u_{\infty}$
- \succ Normalized size of the periodic unit cell (PUC):

■ *L*/*d*

On the size of the periodic unit cell

- All transport parameters tend to converge as the size of the PUC increases.
- ➢PUC size converged → Representative elementary volume (REV)
- The convergence depends on the pore size dispersion:
 - The greater the polydispersity, the larger the REV size.

Sorrento

SAPEM' 23

影

On the size of the periodic unit cell

- The convergence on the PUC size is not the same for all transport parameters:
 - PUC needs a largest size to be a REV for k₀.
- \succ Same observation for different τ_o
- Message for experimental characterization:
 - A sample size that achieves "convergence" for k₀ can be considered as reliable for characterizing the other transport parameters and acoustic properties.

Convergence of transport parameters for Cd10

Sorrento

Polydispersity effect and effective pore size

- Relating transport parameters of a polydisperse foam to a reference monodisperse one: $\gamma = \left(\frac{\mathcal{TP}^*(C_d)}{\mathcal{TP}^*_{max}}\right)^{1/\beta},$
 - $\beta = 1$: Λ , Λ' and α_{∞}
 - $\beta = 2$: k_0 and k'_0
- Observations:
 - α_{∞} almost unchanged
 - $k_0, k'_0, \Lambda, \Lambda'$ increase with C_d
 - γ do not depend on τ_o (but only on C_d)
- Simulate a polydisperse foam by an equivalent monodisperse foam, what is the pore size ?

$$D = d \times \gamma$$

For each transport parameter, there exists an effective pore size:

$$D_{k_0'} \ge D_{k_0} \ge D_{\Lambda'} \ge D_{\Lambda} \ge D_{\alpha_{\infty}} = d$$

Monodisperse foam:

$$D_{k_0'} = D_{k_0} = D_{\Lambda'} = D_{\Lambda} = D_{\alpha_{\infty}} = \alpha$$

Sorrento

SAPEM' 23

Surrogate models for transport parameters

Transport parameter of a random <u>polydisperse</u> foam:

 $\mathcal{TP}^*(C_d) = (\gamma)^\beta \mathcal{TP}^*(0),$

- $\succ \gamma$ is calculated from C_d
- > Normalized transport parameters of reference <u>monodisperse</u> foam depends on τ_o (Kelvin-cell simulation):
 - With membranes, $0.1 \le \tau_o \le 0.9$:

• Without membrane, $\tau_o \approx 1$

$\alpha^*_{\infty}(0) = 497.88\tau_o^6 - 1691.9\tau_o^5 + 2322.2\tau_o^4$
$-1649.9\tau_o^3+646.21\tau_o^2-136.69\tau_o+14.334,$
$k_0^*(0) = 0.0283\tau_o^3,$
$k_0^{\prime *}(0) = 0.0994\tau_o^3 - 0.0735\tau_o^2 + 0.0242\tau_o + 0.0122,$
$\Lambda^* \left(0 \right) = 31.357 \tau_o^5 - 65.618 \tau_o^4 + 51.741 \tau_o^3$
$-18.44\tau_o^2 + 3.1726\tau_o - 0.1573,$
$\Lambda^{\prime *}(0) = 44.585\tau_o^5 - 93.24\tau_o^4 + 73.568\tau_o^3$
$-26.054\tau_o^2 + 4.1708\tau_o + 0.0704.$

ϕ	$k_{0}^{\ast}\left(0\right)$	$k_0^{\prime *}(0)$	$\Lambda^{*}\left(0 ight)$	$\Lambda^{\prime *}\left(0\right)$	$\alpha^*_\infty(0)$
0.986	0.018	0.038	0.623	1.078	1.03

Sorrento

SAPEM' 23

Application on open-cell melamine foams

Pore size estimation of a melamine foam sample

Note: In Perrot et al model (2012)¹, the polydispersity is not considered.

1. [Perrot et al., J. Appl. Phys. 111, 014911 (2012)].

C.T. Nguyen, Effect of pore size polydispersity on acoustic properties of high-porosity solid foams

9

2Vben

Souceuto

Sorrento

SAPEM' 23

影踏

SAPEN'

الله Inverse identification of the morphological features

- → Transport parameters are provided (measurements, $TP(C_d)$) → Information about microstructure of <u>high-porosity</u> foams (C_d , d, τ_o)
 - $\{\phi \approx 1, \alpha_{\infty}, k_0, \Lambda, \Lambda'\}$
 - $\alpha_{\infty}^{*}(0) = \alpha_{\infty} \to \tau_{o}$
 - $\bullet \quad \tau_o \to \begin{cases} k_0^*(0) \\ \Lambda^*(0) \\ \Lambda'^*(0) \end{cases}$
 - $\begin{cases} \mathbf{k}_0 / k_0^*(0) \\ \Lambda / \Lambda^*(0) \end{cases} \rightarrow \{ C_d, d \}$
 - Verify: $\{C_d, d, \tau_o\} \rightarrow \Lambda' \text{ vs } \Lambda'$

Foam	d (μm)	$C_{d}(-)$	$\tau_o(-)$	$\phi(-)$	$k_0 \left(\times 10^{-10} m^2\right)$	$\alpha_{\infty}(-)$	$\Lambda(\mu m)$	$\Lambda'(\mu m)$
Melamine								
Direct Charac.	-	-	—	0.99 ± 0.002	16.71 ± 1.78	1.02 ± 0.01	100 ± 10	190 ± 15
Perrot's model	305	-	—	0.986	16.71	1.03	190	329
Our model	118	0.51	1	≈ 1	16.71	1.03	100	185
Polyurethane								
Direct Charac.	-	-	-	0.96 ± 0.020	14.49 ± 2.20	1.79 ± 0.03	66 ± 4	286 ± 59
Perrot's model	284	-	_	0.986	14.49	1.03	177	306
HP model	1092	0	0.35	0.986	14.49	1.79	101	358
Our model	593	0.38	0.35	≈ 1	14.49	1.79	66	244

- In **Perrot et al model**¹, foams are considered as <u>monodispersed</u> without membranes, *d* is calculated from k_0 , the remaining parameters (α_{∞} , Λ , Λ') are simulated from a Kevin-cell with *d*
- In **HP model**², foams are considered as <u>monodispersed with</u> <u>membranes</u>, d and τ_o are calculated from k_0 and α_{∞} , the remaining parameters (Λ , Λ') are then simulated from a Kelvin-cell with d and τ_0

1. [Perrot et al., J. Appl. Phys. 111, 014911 (2012)]; 2. [Hoang and Perrot. J. Appl. Phys. 112, 054911 (2012)]

C.T. Nguyen, Effect of pore size polydispersity on acoustic properties of high-porosity solid foams

Conclusions

>The convergence of the REV size is not the same for all transport parameters:

- Depending on the foam's polydispersity C_d
- REV size needs to be larger for the viscous permeability (than the other parameters)

Effect of pore size polydispersity (with d, τ_o constant):

- Keeping α_{∞} unchanged
- Increasing $k_0, k_0', \Lambda, \Lambda'$

➤Surrogate models are proposed:

- Direct calculation of the acoustical properties from the corresponding microstructural descriptors of foam (C_d, d, τ_o)
- Identifying morphological properties through the inverse analysis of measured transport parameters.

蒸ぎ

SAPEM' 23

Sorrento

Surrento SAPEN'2

