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Introduction & objectives

➢Real foams
▪ Acoustic or thermal insulation
▪ Without or with membranes (very thin, 𝑡𝑚 ≈ 0.3𝜇𝑚)
▪ Local heterogeneity in pore sizes 
▪ High porosity (𝜙 ≈ 1)

➢Acoustic properties
▪ Transport parameters/Sound absorption coefficient
▪ Resulting from microstructure features
▪ Simulation (at pore-scale): very expensive (generally)

➢Objectives
▪ Study the effect of pore size polydispersity on transport 

parameters of random foams
▪ Predict acoustic properties from microstructural parameters 

(pore size distribution, mean aperture ratio,…)
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A melamine foam – without membrane

A PU foam – with thin membranes

500𝜇𝑚



Microstructure reconstruction

➢Periodic unit cell (PUC) is generated by an 
adaptive Laguerre tessellation1

➢Log-normal distribution of pore sizes

➢Pore size polydispersity (Coefficient of variation):

▪ 𝐶𝑑 =
𝜎𝑑

𝑑

▪ 𝑑: Average pore size; 𝜎𝑑: Standard deviation.

➢Aperture ratio of open windows (membranes) 

▪ 𝜏𝑜 =
𝐴𝑎𝑝

𝐴𝑜𝑤
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Samples of PUC microstructures. The PUC size is normalized 
by pore size average, 𝐿/𝑑 = 10.

Estimated polydispersity levels in the generated PUC microstructures

𝐿

1. [Quey et al., Comput. Method Appl. M. 330, 308 (2018)].



Transport parameters simulation

➢Static viscous permeability 𝑘0:

➢High-frequency tortuosity 𝛼∞ and Viscous 
characteristic length Λ:

➢Static thermal permeability 𝑘0
′ :

➢Thermal characteristic length Λ′:
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➢Open porosity

▪ 𝜙 = 1

➢Normalized transport parameters (by the
average pore size 𝑑):

▪ 𝑘0
∗ =

𝑘0

𝑑2,  𝑘0
′ ∗

=
𝑘0

′

𝑑2

▪ Λ∗ =
Λ

𝑑
, Λ′∗ =

Λ′

𝑑

▪ 𝛼∞
∗ = 𝛼∞

➢Normalized size of the periodic unit cell (PUC):
▪ 𝐿/𝑑



On the size of the periodic unit cell

➢All transport parameters tend 
to converge as the size of the 
PUC increases.

➢PUC size converged →
Representative elementary 
volume (REV)

➢The convergence depends on 
the pore size dispersion:
▪ The greater the polydispersity, 

the larger the REV size.
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On the size of the periodic unit cell

➢The convergence on the PUC size 
is not the same for all transport 
parameters:
▪ PUC needs a largest size to be a REV 

for 𝑘0.

➢Same observation for different 𝜏𝑜

➢Message for experimental 
characterization:
▪ A sample size that achieves 

“convergence” for 𝑘0 can be 
considered as reliable for 
characterizing the other transport 
parameters and acoustic properties.
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Convergence of transport parameters for Cd10



Polydispersity effect and effective pore size

➢Relating transport parameters of a 
polydisperse foam to a reference 
monodisperse one:

▪ 𝛽 = 1:  Λ, Λ′ and 𝛼∞

▪ 𝛽 = 2: 𝑘0 and 𝑘0
′

➢Observations:
▪ 𝛼∞ almost unchanged
▪ 𝑘0, 𝑘0

′ , Λ, Λ′ increase with 𝐶𝑑

▪ 𝛾 do not depend on 𝜏𝑜 (but only on 𝐶𝑑)

➢ Simulate a polydisperse foam by an 
equivalent monodisperse foam, what is the 
pore size ? 

𝐷 = 𝑑 × 𝛾
▪ For each transport parameter, there exists an 

effective pore size: 
 𝐷𝑘0

′ ≥ 𝐷𝑘0
≥ 𝐷Λ′ ≥ 𝐷Λ ≥ 𝐷𝛼∞

= 𝑑

▪ Monodisperse foam:
 𝐷𝑘0

′ = 𝐷𝑘0
= 𝐷Λ′ = 𝐷Λ = 𝐷𝛼∞

= 𝑑
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𝐶𝑑



Surrogate models for transport parameters
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➢Transport parameter of a random polydisperse foam:

➢𝛾 is calculated from 𝐶𝑑

➢Normalized transport parameters of reference
monodisperse foam depends on 𝜏𝑜 (Kelvin-cell simulation):
▪ With membranes, 0.1 ≤ 𝜏𝑜 ≤ 0.9: 

▪ Without membrane, 𝜏𝑜 ≈ 1



Application on open-cell melamine foams
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▪ Note: In Perrot et al model (2012)1, the polydispersity is not considered.

Pore size estimation of a melamine foam sample

1. [Perrot et al., J. Appl. Phys. 111, 014911 (2012)].



Inverse identification of the morphological features

➢Transport parameters are provided (measurements, 𝑇𝑃(𝐶𝑑)) → Information about 
microstructure of high-porosity foams (𝐶𝑑 , 𝑑, 𝜏𝑜)

▪ {𝜙 ≈ 1, 𝛼∞, 𝑘0, Λ, Λ′}

▪ 𝛼∞
∗ 0 = 𝛼∞ → 𝜏𝑜

▪  𝜏𝑜 →

𝑘0
∗(0)

Λ∗(0)

Λ′∗(0)

▪
k0/𝑘0

∗(0)

Λ/Λ∗(0)
→ {𝐶𝑑 , 𝑑}

▪ Verify: 𝐶𝑑 , 𝑑, 𝜏𝑜 → Λ′ vs Λ′
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▪ In Perrot et al model1, foams are considered as monodispersed 
without membranes, 𝑑 is calculated from 𝑘0, the remaining 
parameters (𝛼∞, Λ, Λ′) are simulated from a Kevin-cell with 𝑑

▪ In HP model2, foams are considered as monodispersed with 
membranes, 𝑑 and 𝜏𝑜 are calculated from 𝑘0 and 𝛼∞, the remaining 
parameters (Λ, Λ′) are then simulated from a Kelvin-cell with 𝑑 and 𝜏0

1. [Perrot et al., J. Appl. Phys. 111, 014911 (2012)]; 2. [Hoang and Perrot. J. Appl. Phys. 112, 054911 (2012)]



Conclusions

➢The convergence of the REV size is not the same for all transport parameters:
▪ Depending on the foam’s polydispersity 𝐶𝑑

▪ REV size needs to be larger for the viscous permeability (than the other parameters)

➢Effect of pore size polydispersity (with 𝑑, 𝜏𝑜 constant):
▪ Keeping 𝛼∞ unchanged

▪ Increasing 𝑘0, 𝑘0
′ , Λ, Λ′

➢Surrogate models are proposed:
▪ Direct calculation of the acoustical properties from the corresponding microstructural 

descriptors of foam (𝐶𝑑 , 𝑑, 𝜏𝑜) 

▪ Identifying morphological properties through the inverse analysis of measured transport 
parameters.
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Thanks for your attention!


	Diapositive 1 Effect of Pore Size Polydispersity on Acoustic Properties of High-Porosity Solid Foams
	Diapositive 2 Introduction & objectives
	Diapositive 3 Microstructure reconstruction
	Diapositive 4 Transport parameters simulation
	Diapositive 5 On the size of the periodic unit cell
	Diapositive 6 On the size of the periodic unit cell
	Diapositive 7 Polydispersity effect and effective pore size
	Diapositive 8 Surrogate models for transport parameters
	Diapositive 9 Application on open-cell melamine foams
	Diapositive 10 Inverse identification of the morphological features
	Diapositive 11 Conclusions
	Diapositive 12 Thanks for your attention!

