7th Symposium on the Acoustics of Poro-Elastic Materials 第七届多孔弹性材料声学技术大会

常熟

Sorrento SAPEM'23

Preparation, Acoustic Absorption and Application Prospect of Aerogels 气凝胶材料的研制、吸声性能与应用前景

Dr. Ju-Qi Ruan (阮居祺 博士/硕导)

School of Physics Science and Technology

Kunming University, Yun Nan, China

Nov. 7, 2023

Outline

- 1. Research Background
- Acoustic Absorption Characteristics of Inorganic
 Aerogels SiO₂ Aerogel

3. Acoustic Absorption Characteristics of Organic
Aerogels — Bio-based Aerogel (cellulose)

4. Summary and Outlook

1. Research Background

Noise problem

High-end equipment manufacturing

Constructions

Daily life

► How to eliminate noise?

2. Propagation path

1. Sound source

Sound-absorbing materials 3. Human ears

Sound-absorbing materials

Porous material [1] *Nat. Commun.* (2014)

(Micro-) perforated plate

Metamaterial [2] *Nat. Mater.* (2014)

Unit 2

Hybrid type [3] *Mater. Horiz.* (2017)

Comparison of each type of sound-absorbing material

	Bandwidth (for absorption)	Designability (to frequency)	Cost	Sustainability	Space saving
Porous material	***	*	****	****	****
(Micro-) perforated plate	*	***	***	***	*
Metamaterial	**	****	**	**	**
Hybrid type	****	**	*	**	**

Porous sound-absorbing materials

- 1. Metal-based (Metal foams [4], etc.)
- 2. Inorganic species (Ceramic foams [5], Rock wool, etc.)
- 3. Organic species (Polymer foams [6], etc.)
- 4. Composites (MOFs, etc.)

[4] J. A. Liu, et al., *J. Mater. Res. Technol.*,
25: 1263-1272 (2023)
[5] J. Y. Lou, et al., *Ceram. Int.*, 49: 38103-38114 (2023)
[6] R. Y. Cai, et al., *ACS Appl. Polym. Mater.*, 5: 7795-7804 (2023)

Aerogels

Broke 15 Guinness World Records:

- 1. Lowest <u>density</u> (solid, < 1.5 mg/cm³)
- 2. Lowest sound speed
- 3. Highest porosity (up to 99.9%)
- 4. Minimum <u>aperture</u>
- 5. Widest range of density
- 6. Highest acoustic impedance
- 7. Lowest <u>refractive index</u> (to light, < 1.0003)
- 8. Widest range of refractive index (to light)
- 9. Lowest Young's modulus
- 10. Lowest loss angle tangent (< 10⁻⁴)
- 11. Lowest <u>dielectric constant</u> (< 1.003)
- 12. Widest range of compression modulus
- 13. Lowest thermal conductivity (< 0.013 W/(mK))
- 14. Most loose structural material for 3D printing
- 15. 1st implementation of sampling from the comet

1st generation — Inorganic aerogel (Typical: SiO₂ aerogel)

Adv. Mater. (2013)

2nd generation — Organic polymer aerogel (Typical: Carbon-based aerogel [7])

(Typical: **Cellulose aerogel**)

2. Acoustic Absorption Characteristics of Inorganic Aerogels

(SiO₂ Aerogel)

Combining advantages

"Lightweight and high-strength" & "High-efficiency acoustic absorption"

Metal foam (primary structure)

Aerogel (secondary structure)

High specific stiffness

Metal foam/Aerogel Composites

High acoustic damping

Work1: Acoustic absorption performance of Copper Foam/SiO₂ Aerogels (CFSAs) and Iron Foam/SiO₂ Aerogel (IFSA) composites

Ju-Qi Ruan, et al., AIP Adv., 9: 015209 (2019)

Ju-Qi Ruan, et al., *Appl. Phys. Express*, 12: 035002 (2019) **(编辑荐读精选文章)** 发明专利: 卢明辉、阮居祺、李政、张善涛、陈延峰, ZL 2015 1 0810252. 5

Fig. 1. Fabrication of bimodal CFSAs through a two-step, acid-base catalyzed sol-gel transition followed by CO_2 supercritical drying process.

Fig. 2. Preparation of bimodal IFSA through a two-step, acid-base catalyzed sol-gel transition, afterwards dried by *freeze drying*.

IFSA (High morphology integrity)

Johnson–Champoux–Allard (JCA) Combined with Bimodal Model

JCA Model ^[8] J. Acoust. Soc. Am. (2017)

$$\rho_{\rm e}(\omega) = \frac{\alpha_{\rm w}\rho_0}{\phi} \left(1 + \frac{r_{\rm s}\phi}{i\omega\rho_0\alpha_{\rm w}} \sqrt{1 + \frac{4i\alpha_{\rm w}^2\eta\rho_0\omega}{r_{\rm s}^2\Lambda^2\phi^2}} \right)$$

$$K_{\rm e}(\omega) = \frac{\gamma p_0}{\phi} \left[\gamma - (\gamma - 1) \left(1 + \frac{8\eta}{i{\Lambda'}^2 N_{\rm pr}\omega\rho_0} \sqrt{1 + \frac{i\rho_0 \omega N_{\rm pr}{\Lambda'}^2}{16\eta}} \right)^{-1} \right]^{-1}$$

$$\Lambda = \frac{1}{c} \sqrt{\frac{8\alpha_{\infty}\eta}{\phi r_{\rm s}}} \qquad \qquad \Lambda' = \frac{1}{c'} \sqrt{\frac{8\alpha_{\infty}\eta}{\phi r_{\rm s}}}$$

Primary structure

Bimodal structure

Designed Bimodal Model (2D)

Acoustic absorption performance of CFSAs

Acoustic absorption performance of IFSA

Fig. 5. (a) Normal incident sound absorption coefficient of IF and IFSA. (b) Effect of the airgap thickness on low-frequency sound absorption properties of IFSA.

Porosity (%): 95.31 (±1) Airflow resistivity (N·s/m ⁴)	Table. 2. Ma	ximum sc	ound abso IFSA w	orption coe vith differe	efficient ar ent airgap (nd its corr hickness	respondin	g frequen	cy of
20262.27 (±1329.26)		Fi	rst	First	: (Hz)	Sec	ond	Secon	ıd (Hz)
Tortuosity: 1.5 (±0.05)	Airgap thick	Exp	Sim	Exp	Sim	Exp	Sim	Exp	Sim
Viscous length (μm) 93.26 (±2)	10 mm	0.99	0.99	2240	2500				
Thermal length (µm)	50 mm	0.99	0.99	956	1050	0.99	0.99	3596	3600
100.32 (±2)			'						 13/3(

Total Acoustic Pressure Field

1

0

▼ -0.3

0.5

Free triangular mesh

Sound Pressure Level

Scattered Pressure Field

Mechanical properties of CFSAs & IFSA

Compression behavior of IFSA

'Axial quasi-static compression '

Density and parameters of compression properties of CF, IF, CFSAs and IFSA

Sample	CF	CFSA-0	CFSA-2%	CFSA-6%	CFSA-8%	IF	IFSA
Young's modulus (MPa)	7.89	7.12	8.12	11.01	9.99	46.49 (±4.38)	46.6 (±3.94)
Compression strength (MPa)	0.25	0.26	0.28	0.30	0.26	0.33 (±0.01)	0.46 (±0.04)
Density (g/cm ³)	0.20	0.26	0.26	0.28	0.28	0.19 (±0.01)	0.29 (±0.01)
Specific modulus (10 ⁵ m ² /s ²)	0.39	0.27	0.31	0.39	0.36	2.4 (±0.3)	1.6 (±0.1)

Temperature resistance

Hydrophobicity

Sample Presentation

3. Acoustic Absorption Characteristics of Organic Aerogels

(Bio-based Aerogel (cellulose))

Work 2: Acoustic absorption performance of Natural Cellulose Nanocrystal Aerogels (CNCAs) Facile Low-cost Green

Ju-Qi Ruan, et al., AIP Adv., 12: 055102 (2022)

Ju-Qi Ruan, et al., J. Mater. Sci, 58: 971-982 (2023) (编辑荐读精选文章)

Sample Preparation (CWs)

Fig. 6. Preparation of CWs along the longitudinal and tangential directions via a two-step lignin removal process followed by supercritical CO_2 drying.

Fig. 7. Optical images of natural basswood matrix (a) and the as-prepared CW (b). SEM images of natural basswood (c, e) and CW (d, f).

Samples for acoustic absorption measurement

Sample Preparation (CNCAs)

Fig. 8. Schematic illustration of the preparation process of the cellulose nanocrystal (CNC) aerogels.

Fig. 9. Optical photographs (a-c) and SEM images of CNC aerogels. d and d', e and e', f and f' show the morphology of CNCA-t, CNCA-m, and CNCA-h at low and high magnification, respectively.

Three-parameter Approximate Johnson-Champoux-Allard-Lafarge (JCAL) Model

22/30

Acoustic absorption performance of CNCAs

Fig. 11. (a) Normal acoustic absorption coefficient of CNCAs. (b) Schematic of the designed porous media model to predict the acoustic absorption behavior.

Pore size distribution

 Table. 5. Acoustic absorption performance of CNCAs

	Average absorption coefficient A _{ave}	Maximum absorption coefficient A _{max}	Bandwidth BW (Hz)
CNCA-t	0.49	0.87	225
CNCA-m	0.74	0.89	2514
CNCA-h	0.85	0.99	4673

Multi-functionality of CNCAs

4. Summary and Outlook

Metal Foam/Aerogel Composites

Novel Lightweight & Multifunctional

Structural Material

High Efficiency for Noise Reduction Energy Saving & Emission Reduction

Aeronautics & Astronautics

Rail Transit

Constructions

Biobased Aerogels

<u>Novel Multifunctional</u> <u>Indoor Material</u>

Publications Related to This Report

► Ju-Qi Ruan, Kai-Yue Xie, Zhaoxi Li, Xiaoqing Zuo, Wei Guo, Qing-Yuan Chen, Houyin Li, Chunlong Fei, and Ming-Hui Lu, <u>Multifunctional ultralight nanocellulose aerogels as excellent</u> <u>broadband acoustic absorption materials</u>. *Journal of Materials Science* **58**: 971-982 (2023) (Editor's Pick)

► Ju-Qi Ruan, Zhaoxi Li, Kai-Yue Xie, Wei Guo, Chunlong Fei, Ming-Hui Lu, and Hai Yang, <u>Multifunctional cellulose wood with effective acoustic absorption</u>. *AIP Advances* **12**: 055102 (2022)

► Ju-Qi Ruan, Shahrzad Ghaffari Mosanenzadeh, Xin Li, Si-Yuan Yu, Chu Ma, Xin Lin, Shan-Tao Zhang, Ming-Hui Lu, Nicholas X. Fang, and Yan-Feng Chen. <u>Bimodal hybrid lightweight</u> <u>sound-absorbing material with high stiffness</u>. *Applied Physics Express* **12**: 035002 (2019) (Editor's Pick)

► Ju-Qi Ruan, Hao Ge, Dafang Huang, Xin Li, Shan-Tao Zhang, and Ming-Hui Lu, <u>Copper</u> <u>foam sustained silica aerogel for high-efficiency acoustic absorption</u>. *AIP Advances* **9**: 015209 (2019)

- ▶ 卢明辉, 阮居祺, 李政, 张善涛, 陈延峰, 基于环氧树脂增强的泡沫金属/二氧化硅气凝胶复 合吸声材料的制备方法. 专利号: ZL 2015 1 0810252.5 (中国发明专利)
- ▶ 崔升, 阮居祺, 沈晓冬, 一种亲水型SiO₂气凝胶的制备方法. 专利号: ZL 2013 1 0287903. 8 (中国发明专利)

Acknowledgements

Prof. Sheng Cui supported by: ► Yunnan Fundamental

The above researches were

Research Projects (Grant No. 202201AU070036, No.

202101BA070001-175)

National Natural Science
 Foundation of China (Grant No.
 52261009)

Science Foundation of
 Kunming University (Grant No.
 YJL20014)

 Science Foundation of the National Laboratory of Solid
 State Microstructures (Grant No. M35032)

Acoustic absorption performance of CWs

Fig. 10. (a) Normal incident sound absorption coefficient of natural basswood and CWs. (b) Comparison of the acoustic absorption performance.

Table. 3. Air permeability	and acoustic	absorption	performance
of natural	basswood ar	nd CWs	

	Air permeability (Darcys)	A _{ave}	A _{max}
Basswood-T	0.34	0.05	0.07 (at 4600 Hz)
Basswood-L	5.66	0.16	0.19 (at 2280 Hz)
CW-T	0.53	0.10	0.12 (at 6180 Hz)
CW-L	33.78	0.33	0.43 (at 6120 Hz)

Cellulose wood

★ 环氧树脂掺入量对 SA 结构的影响

环氧树脂掺入量对 SA 微观形貌的影响

不同环氧树脂掺入量的 SA 的 N2 吸附-脱附等温线

环氧树脂掺入量对 SA 孔结构参数的影响

Sample	SA-0	SA-2%	SA-6%	SA-8%
Specific surface area (m ² /g)	1033.68	1026.74	920.71	969.99
Total pore volume (cm ³ /g)	3.20	3.35	3.15	3.31
Average pore size (nm)	124.00	130.69	136.86	136.56

★ 双模结构

SA

- ► Specific surface area 1106.44 m²/g
- ► Total pore volume 1.24 cm³/g
- ► Average pore size 4.5 nm

结论: 经冷冻干燥制备的 SA 呈现 出优越的孔结构。

★ 纤维素木头的结构

天然椴木与纤维素木头结构通透性对比。其中 "a-L" 为日本落叶松, "A-L" 为去除木质素后的日本落叶松 [1]; "b-L" 为北美鹅 掌楸, "B-L" 为经汽爆处理后的北美鹅掌楸 [2]。

[1] C. W. Kang, et al., J. Fac. Agr. Kyushu Univ. 53, 479-483 (2008).
[2] C. W. Kang, et al., J. Fac. Agr. Kyushu Univ. 55, 327-332 (2010).

★ 纤维素木头的准静态压缩性能

Ⅰ线弹性阶段 (ε < 0.03)

Ⅱ 塑性形变阶段 (0.03 < *ε* < 0.08)

Ⅲ 致密化阶段 (ε > 0.08)

天然椴木和纤维素木头的轴向准静态压缩应力-应变曲线

天然椴木和纤维素木头的抗压性能参数

Sample	Young's modulus E_{c} (MPa)	Compression strength σ_{c} (MPa)	Specific modulus $E_{\rm c} / \rho ~(10^5 {\rm m^2/s^2})$
Basswood-T	146.1	3.2	2.21
Cellulose wood-T	5.34	0.53	0.21
Basswood-L	1679.53	34.44	25.45
Cellulose wood-L	55.55	1.19	2.14

结论:纤维素木头一 定程度上保留了天然椴 木优越的抗压性能,具 备较高的杨氏模量、抗 压强度和比模量。

★ 纤维素木头的漫反射特性

[1] L. Hu, et al., Energy Environ. Sci. 6, 513-518 (2013).

[2] Z. Wu, et al., Angew. Chem. 125, 2997-3001 (2013).

Rock wool

Wood fiber

Sponge

Polyester fiber

Mineral wool

几种常见吸声材料的吸声性能(样品厚度为15 mm)

Rock wool

Wood fiber

Sponge

Polyester fiber

Mineral wool Glass wool

几种常见吸声材料的抗压性能(压缩速率为 0.5 mm/min)

纤维素木头

天然椴木

一些常见吸声材料的 (a) 全反射性能; (b) 镜面反射性能和 (c) 漫反射性能