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Motivations

SAPEM-Sorrento-2023

• Sound Absorption Coefficient (SAC) is known to depend on the type of incident sound 
field. In practice, idealized incident fields such as normal, oblique incidence plane 
wave or diffuse field are used

How much does the SAC of a material under 
monopole excitation deviate from that under idealized 

plane waves or diffuse fields depending on source 
height, material lateral extent and characteristics ?

Modeling framework

• Idealized SACs classically used as input parameters in indoor acoustic modeling 
• However sound sources often represented as monopoles
• Lack of literature on SACs for finite-sized porous materials under monopole excitation
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Motivations (continued)

• Diffuse field SAC can be obtained by averaging over the incidence angles
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Diffuse field Diffuse field

• Plane wave SAC can be 
derived from complex 
reflection coefficient
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• Approximation of  
classically obtained using in 
situ methods which make 
use of a monopole source
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Measurement framework



Motivations (continued)

How relevant is the local plane wave assumption for 
assessing diffuse field SACs of finite-size absorbing 

materials?

Measurement framework

How to describe the overall sound performance of the 
material sample by a suitable SAC when subjected to a 
monopole excitation and how this SAC compares to the 

plane wave and diffuse field SACs ?
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• Approximating            with               introduces some error to obtain            Uncertainty 
about conditions under which this error is minimized (e.g., material size, source height)
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• Investigate how factors such as the monopole height, the material size and material 
characteristics (thickness) influence  abs

Objectives

Main objective

Specific objectives

[4] J. Allard, W. Lauriks, and C. Verhaegen, “The acoustic sound field above a porous layer and the estimation of the acoustic surface impedance from free‐field 
measurements,” The Journal of the Acoustical Society of America 91, 3057–3060 (1992) 

• Investigate the SAC of a finite size extended-reaction sound absorbing material when 
subjected to a monopole excitation based on a power ratio definition of the SAC (        ) 
and Allard’s model [4]
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• Investigate the extent to which the diffuse field SAC          obtained from                can 
approximate the traditional diffuse field SAC  
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Theory – Allard model

• Allows for calculating the sound field above a laterally infinite porous material excited by a monopole source [1]
• Porous material described by an equivalent fluid model

[4] J. Allard, W. Lauriks, and C. Verhaegen, “The acoustic sound field above a porous layer and the estimation of the acoustic surface impedance from free‐field 
measurements,” The Journal of the Acoustical Society of America 91, 3057–3060 (1992) 
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Theory – Allard model - field above porous material
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Assume radial 
symmetry

( )ˆ , ,incp r z  ( )ˆ , ,refp r z 



Theory – Allard model – field inside porous material

• Sound field inside the porous material given by [5,6]

[5] S. Thomasson, “Sound propagation above a layer with a large refraction index,” The Journal of the Acoustical Society of America 61, 659–674 (1977) 
[6] H. Tao, B. N. Tong, and K. M. Li, “Sound penetration into a hard-backed rigid porous layer: Theory and experiments,” The Journal of the Acoustical Society of America 
136, 475–484 (2014
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Theory – classical definitions of SAC
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Oblique incidence 
Plane wave excitation
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Oblique incidence 
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Theory – Calculation of incident, absorbed and dissipated powers [1,2,3]
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[1] Kuipers E., Measuring sound absorption using local field assumptions, PhD thesis, U of Twente, 2013
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Finite element model (COMSOL Multiphysics)

Results – Verification of the proposed approach
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JCA model

JCA model
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Results – Verification of the proposed approach
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Results –Effect of radial distance upper bound      , material thickness and 
source height on

zs=0.3 m

Thickness d=0.01 m

≠            even for smallabs ( )pw 0 maxr

Absorption peak 

Absorption peak amplitude ↗ with and exceeds 1 for d=5cm & d=1m maxr
for an infinite materialabs

can be >1 even for “infinite materials”abspeak >1 can be explained by the behavior of the normal absorbed 
intensity field at the material surface (spatial zone where                 )abs incI I
abs



Results – vs       vs 
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Results – vs       vs 
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Conclusion

Sapem 2023-Sorrento

• For certain conditions, a sound absorption peak appears at low frequencies particularly when the source is close to the 

material surface. 

maxr• implicitly takes into account the material radial size and strongly depends on it
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sound intensity within a substantial region not far from the source

abs• Converged value of       (representing the SAC for an infinitely laterally extended material) does not align with the 

SAC values for normal incidence plane wave or diffuse field conditions

• For practical material sizes       is significantly different from normal or diffuse field SAC at low frequencies when source 

is near the material.  At medium-high frequencies,      approaches diffuse field SAC for sufficiently absorbing materials.  
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This raises caution against utilizing plane wave and 

diffuse field SACs for characterizing the sound absorption 

performance of porous materials under monopole 

excitation in particular at low frequency.



Thank you !
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