Strain wave propagation through felt-like material

Maria M. Vuin, Dmitri Kartofelev, Andrus Salupere

Tallinn University of Technology,
School of Science, Department of Cybernetics, Laboratory of Solid Mechanics, Tallinn, Estonia

Friday, Nov. 10, 2023

Motivation

- Metamaterials are engineered materials ${ }^{1}$ designed to have properties that can not be found in natural materials
- They are created by arranging or structuring components at a smaller scale than the wavelength of the phenomena they interact with
- Metamaterials can be designed such that they exhibit band gaps ($B G$) and properties like negative group velocity (NGV) ${ }^{2,3}$
- These materials can be used to manipulate acoustic waves and, therefore beneficial for noise and vibration reduction and control

[^0]
Main aim

- Numerically analyse the acoustic wave propagation through a felt continuum using a previously obtained visco-elastic model equation is performed
- Dispersion and dissipation analysis is presented
- Studying numerically the possible effect of NGV and BG on the wave propagation

Model equation

A 1D equation for modelling wave propagation through a felt-like medium was derived in ${ }^{4}$. Presented here in dimensionless variables in the following form:

$$
\begin{equation*}
\frac{\partial^{2}\left(\varepsilon^{p}\right)}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3}\left(\varepsilon^{p}\right)}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0 \tag{1}
\end{equation*}
$$

where $\varepsilon(x, t)$ is the strain, $p \geq 1$ is the material parameter and $0<\delta \leq 1$ is the hereditary parameter.

[^1]
Dispersion and dissipation analysis

Linearised form of Eq. (1) is obtained by taking $p=1$

$$
\begin{equation*}
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0 \tag{2}
\end{equation*}
$$

The solution to (2) can be assumed in the form

$$
\begin{equation*}
\varepsilon(x, t) \propto \exp (\sigma t+\mathrm{i} k x) \tag{3}
\end{equation*}
$$

where σ is the attenuation, i is the imaginary unit and k is the wavenumber. Substituting (3) into (2) produces the following characteristic equation:

$$
\begin{equation*}
\delta \sigma^{3}+\sigma^{2}+k^{2} \sigma+k^{2}=0 . \tag{4}
\end{equation*}
$$

Since k is considered to be real the σ can be written in terms of

$$
\begin{equation*}
\sigma(k)=\varsigma(k)+\mathrm{i} \mu(k) . \tag{5}
\end{equation*}
$$

Dispersion and dissipation analysis

Using (5) the assumption (3) takes the following form

$$
\begin{equation*}
\varepsilon(x, t) \propto \exp ((\varsigma+\mathrm{i} \mu) t+\mathrm{i} k x)=\exp (\varsigma t) \cdot \exp (\mathrm{i}(\mu t+k x)) \tag{6}
\end{equation*}
$$

Where ς acts in time as an attenuation coefficient and μ is characterising the dispersion. The equation (4) can be solved using (5) as a system and written as a function of wavenumber k :

$$
\left\{\begin{array}{l}
\varsigma=\frac{1}{12 \delta S}\left[\sqrt[3]{4} S^{2}-4 S+2 \sqrt[3]{2}\left(1-3 k^{2} \delta\right)\right] \tag{7}\\
\mu=\frac{\sqrt{6}}{12 \delta S} \sqrt{\sqrt[3]{2} S^{4}-4 S^{2}\left(1-3 k^{2} \delta\right)+2 \sqrt[3]{4}\left(1-3 k^{2} \delta\right)^{2}}
\end{array}\right.
$$

where

$$
\begin{align*}
& S=\sqrt[3]{2-9 k^{2} \delta(1-3 \delta)+3 k \delta \sqrt{3 Q}} \tag{8}\\
& Q=4 k^{4} \delta-k^{2}\left(1+18 \delta-27 \delta^{2}\right)+4 \tag{9}
\end{align*}
$$

Dispersion and dissipation analysis

Three different solution regimes are distinguishable depending on the value of δ :
(1) Non-dispersive and non-dissipative regime, for $\delta=1$
(2) Low hereditary regime with a continuous dispersion and dissipation curves, for $1 / 9 \leqslant \delta<1$

Dispersion and dissipation analysis

Three different solution regimes are distinguishable depending on the value of δ :
(3) High hereditary regime, when $0<\delta<1 / 9$ dispersion and dissipation graphs have a $B G$ region

At the limit $\delta \rightarrow 0$ the BG widens since $k_{0} \rightarrow 2$ and $k_{1} \rightarrow \infty$.

Negative group velocity

The group velocity is given by

$$
\begin{equation*}
v_{\mathrm{gr}}(k)=\frac{\mathrm{d} \mu}{\mathrm{~d} k} . \tag{10}
\end{equation*}
$$

A region of NGV appears for $0<\delta \lesssim 0.134$.

Negative group velocity

For $0<\delta<1 / 9$ the NGV region is neighboured by the BG.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

The initial value problem (IVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A bell-shaped initial condition (IC) is selected in the following form:

$$
\begin{equation*}
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x) \tag{11}
\end{equation*}
$$

where the characteristic width and amplitude are β and ε_{0}, respectively.

Boundary value problem (BVP), $\delta=1 / 17$

$$
\frac{\partial^{2} \varepsilon}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3} \varepsilon}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

A sinusoidal boundary condition (BC) in the form

$$
\begin{equation*}
\varepsilon(0, t)=\frac{\varepsilon_{0}}{2}[1-\cos (2 \pi \gamma t)] \tag{12}
\end{equation*}
$$

where ε_{0} is the initial amplitude of the signal, γ is the signal frequency.

Linear vs. weakly nonlinear, $\delta=1 / 17$

$$
\frac{\partial^{2}\left(\varepsilon^{p}\right)}{\partial x^{2}}-\frac{\partial^{2} \varepsilon}{\partial t^{2}}+\frac{\partial^{3}\left(\varepsilon^{p}\right)}{\partial x^{2} \partial t}-\delta \frac{\partial^{3} \varepsilon}{\partial t^{3}}=0
$$

The IC is selected in the following form:

$$
\varepsilon(x, 0)=\varepsilon_{0} \operatorname{sech}(\beta x)
$$

A linear case where $p=1$ and a weakly nonlinear case where $p=1.1$ for $k \approx 2$ (left) and $k \approx 50$ (right).

Conclusions

- Model equation for modelling strain wave propagation through felt was analysed
- Three solution regimes were identified depending on the values of δ
- Dispersion and dissipation analysis of the model was presented
- The BG and NGV effects on pulse evolution were studied using pulses with characteristic frequencies that corresponded to spectral wave components (k) located in BG and NGV regions
- The BG and NGV regions did not have a noticeable distorting effect on wave evolution because the characteristic wavelengths of waves were relatively large compared to the microstructure found in the felt

Acknowledgements: This work was supported by the Estonian Research Council (Grant PRG1227)

Strain wave propagation through felt-like material

Maria M. Vuin, Dmitri Kartofelev, Andrus Salupere

Tallinn University of Technology,
School of Science, Department of Cybernetics, Laboratory of Solid Mechanics, Tallinn, Estonia

Friday, Nov. 10, 2023

[^0]: ${ }^{1}$ S. Guenneau and R. V. Craster, Fundamentals of Acoustic Metamaterials Dordrecht: Springer Netherlands, 2013, pp. 1-42.
 ${ }^{2}$ N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, "Ultrasonic metamaterials with negative modulus," Nat. Mater., 5(6), pp. 452-456, 2006.
 ${ }^{3}$ S. Guenneau, A. Movchan, G. Petursson, S. A. Ramakrishna, "Acoustic metamaterials for sound focusing and confinement," New J. Phys., 9(11), p. 399, 2007.

[^1]: ${ }^{4}$ D. Kartofelev, A. Stulov, "Wave propagation and dispersion in microstructured wool felt," Wave Motion, 57, pp. 23-33, 2015.

