Strain wave propagation through felt-like material

Maria M. Vuin, Dmitri Kartofelev, Andrus Salupere

Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of Solid Mechanics, Tallinn, Estonia

Friday, Nov. 10, 2023

SAPEM' 23

Motivation

- Metamaterials are engineered materials¹ designed to have properties that can not be found in natural materials
- They are created by arranging or structuring components at a smaller scale than the wavelength of the phenomena they interact with
- $\bullet\,$ Metamaterials can be designed such that they exhibit band gaps (BG) and properties like negative group velocity (NGV)^{2,3}
- These materials can be used to manipulate acoustic waves and, therefore beneficial for noise and vibration reduction and control

¹S. Guenneau and R. V. Craster, *Fundamentals of Acoustic Metamaterials* Dordrecht: Springer Netherlands, 2013, pp. 1–42.

²N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, "Ultrasonic metamaterials with negative modulus," Nat. Mater., 5(6), pp. 452–456, 2006.

³S. Guenneau, A. Movchan, G. Petursson, S. A. Ramakrishna, "Acoustic metamaterials for sound focusing and confinement," *New J. Phys.*, **9**(11), p. 399, 2007.

M. M. Vuin, D. Kartofelev, A. Salupere

Main aim

- Numerically analyse the acoustic wave propagation through a felt continuum using a previously obtained visco-elastic model equation is performed
- Dispersion and dissipation analysis is presented
- Studying numerically the possible effect of NGV and BG on the wave propagation

A 1D equation for modelling wave propagation through a felt-like medium was derived in 4 . Presented here in dimensionless variables in the following form:

$$\frac{\partial^2 \left(\varepsilon^p\right)}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \left(\varepsilon^p\right)}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0, \tag{1}$$

where $\varepsilon(x,t)$ is the strain, $p\geq 1$ is the material parameter and $0<\delta\leq 1$ is the hereditary parameter.

M. M. Vuin, D. Kartofelev, A. Salupere

 $^{^{4}}$ D. Kartofelev, A. Stulov, "Wave propagation and dispersion in microstructured wool felt," *Wave Motion*, **57**, pp. 23–33, 2015.

Linearised form of Eq. (1) is obtained by taking p = 1

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0.$$
 (2)

The solution to (2) can be assumed in the form

$$\varepsilon(x,t) \propto \exp(\sigma t + \mathrm{i}kx),$$
(3)

where σ is the attenuation, i is the imaginary unit and k is the wavenumber. Substituting (3) into (2) produces the following characteristic equation:

$$\delta\sigma^3 + \sigma^2 + k^2\sigma + k^2 = 0. \tag{4}$$

Since k is considered to be real the σ can be written in terms of

$$\sigma(k) = \varsigma(k) + i\mu(k).$$
(5)

Using (5) the assumption (3) takes the following form

$$\varepsilon(x,t) \propto \exp((\varsigma + i\mu)t + ikx) = \exp(\varsigma t) \cdot \exp(i(\mu t + kx)).$$
 (6)

Where ς acts in time as an attenuation coefficient and μ is characterising the dispersion. The equation (4) can be solved using (5) as a system and written as a function of wavenumber k:

$$\begin{cases} \varsigma = \frac{1}{12\delta S} \left[\sqrt[3]{4}S^2 - 4S + 2\sqrt[3]{2}(1 - 3k^2\delta) \right], \\ \mu = \frac{\sqrt{6}}{12\delta S} \sqrt{\sqrt[3]{2}S^4 - 4S^2(1 - 3k^2\delta) + 2\sqrt[3]{4}(1 - 3k^2\delta)^2}, \end{cases}$$
(7)

where

$$S = \sqrt[3]{2 - 9k^2\delta(1 - 3\delta) + 3k\delta\sqrt{3Q}},$$
(8)

$$Q = 4k^4\delta - k^2(1 + 18\delta - 27\delta^2) + 4.$$
 (9)

Three different solution regimes are distinguishable depending on the value of δ :

- Ow hereditary regime with a continuous dispersion and dissipation curves, for $1/9\leqslant\delta<1$

Three different solution regimes are distinguishable depending on the value of δ :

 $\textcircled{\ }$ High hereditary regime, when $0 < \delta < 1/9$ dispersion and dissipation graphs have a BG region

At the limit $\delta \to 0$ the BG widens since $k_0 \to 2$ and $k_1 \to \infty$.

Negative group velocity

The group velocity is given by

$$v_{\rm gr}(k) = \frac{\mathrm{d}\mu}{\mathrm{d}k}.$$
 (10)

A region of NGV appears for $0 < \delta \lesssim 0.134$.

Here
$$\delta = 1/9 \approx 0.111$$
, and $\delta = 1/6 \approx 0.167$

Negative group velocity

For $0 < \delta < 1/9$ the NGV region is neighboured by the BG.

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A bell-shaped initial condition (IC) is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x),$$
(11)

Boundary value problem (BVP), $\delta = 1/17$

$$\frac{\partial^2 \varepsilon}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \varepsilon}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

A sinusoidal boundary condition (BC) in the form

$$\varepsilon(0,t) = \frac{\varepsilon_0}{2} \left[1 - \cos(2\pi\gamma t) \right],\tag{12}$$

where ε_0 is the initial amplitude of the signal, γ is the signal frequency.

Linear vs. weakly nonlinear, $\delta = 1/17$

$$\frac{\partial^2 \left(\varepsilon^p\right)}{\partial x^2} - \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^3 \left(\varepsilon^p\right)}{\partial x^2 \partial t} - \delta \frac{\partial^3 \varepsilon}{\partial t^3} = 0$$

The IC is selected in the following form:

$$\varepsilon(x,0) = \varepsilon_0 \operatorname{sech}(\beta x).$$

A linear case where p = 1 and a weakly nonlinear case where p = 1.1 for $k \approx 2$ (left) and $k \approx 50$ (right).

M. M. Vuin, D. Kartofelev, A. Salupere

SAPEM' 23

Conclusions

- Model equation for modelling strain wave propagation through felt was analysed
- $\bullet\,$ Three solution regimes were identified depending on the values of $\delta\,$
- Dispersion and dissipation analysis of the model was presented
- The BG and NGV effects on pulse evolution were studied using pulses with characteristic frequencies that corresponded to spectral wave components (k) located in BG and NGV regions
- The BG and NGV regions did not have a noticeable distorting effect on wave evolution because the characteristic wavelengths of waves were relatively large compared to the microstructure found in the felt

Acknowledgements: This work was supported by the Estonian Research Council (Grant PRG1227)

Strain wave propagation through felt-like material

Maria M. Vuin, Dmitri Kartofelev, Andrus Salupere

Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of Solid Mechanics, Tallinn, Estonia

Friday, Nov. 10, 2023

SAPEM' 23