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Porous acoustic screens with partial contact

Road noise is big source of complaints
European regulation is lowering pass-by noise limit
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Porous acoustic screens with partial contact

Completed project: EcOBEx (2014-2017)
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Porous acoustic screens with partial contact

Completed project: EcOBEx (2014-2017)
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Porous acoustic screens with partial contact

Strong effect of screen mechanical properties
Partial contact yields better decoupling
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Porous acoustic screens with partial contact

Strong effect of screen mechanical properties
Partial contact yields better decoupling
Modelled with PTMM (Verdière, 2013)
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Porous acoustic screens with partial contact

Strong effect of screen mechanical properties
Partial contact yields better decoupling
Modelled with PTMM (Verdière, 2013)
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Porous acoustic screens with partial contact

Experimental results of partial contact
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Porous acoustic screens with partial contact

The contact region between the engine and the porous screen should be modelled
1) How much contact when compressed ? 
2) What is the compression stiffness?
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50 mm

10 mm



Porous acoustic screens with partial contact

Modelling a rough surface
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Porous acoustic screens with partial contact

Modelling a rough surface
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Porous acoustic screens with partial contact

Modelling a rough surface
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Porous acoustic screens with partial contact

Modelling a rough surface
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Porous acoustic screens with partial contact

Modelling a rough surface
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Plan

1) Intrinsic material behaviour

2) Pyramid compression
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Modelling material behaviour: nonlinearity

Porous microstructural material
Known to behave non linearly
Modelled with a hyperelastic model
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Modelling material behaviour: nonlinearity

Porous microstructural material
Known to behave non linearly
Modelled with a hyperelastic model
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Modelling material behaviour: nonlinearity

Porous microstructural material
Known to behave non linearly
Modelled with a hyperelastic model
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Modelling material behaviour: relaxation

Time-dependence of measurements due to relaxation
Can the instant response be obtained?
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Modelling material behaviour: relaxation

Time-dependence of measurements due to relaxation
Can the instant response be obtained?
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Modelling material behaviour: relaxation

Time-dependence of measurements due to relaxation
Can the instant response be obtained?
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Modelling material behaviour: relaxation

Time-dependence of measurements due to relaxation
Can the instant response be obtained?
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Modelling material behaviour: relaxation

Over long durations, relaxation leads to large variations
How can it be modelled?
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• 5 minutes: 20 % difference
• 24 hours: 40 % difference



Modelling material behaviour: relaxation

At constant strain, relaxation time 𝜏 increases linearly with time
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Modelling material behaviour: relaxation

Different relaxation times could be modelled with generalized Maxwell model
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𝑵 relaxation times 𝝉𝒊 =
𝝁𝒊

𝑬𝒊
Static stress 𝐸0

Generalized Maxwell model



Modelling material behaviour: relaxation

However the behaviour is more reminiscent of an aging phenomenon
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𝐸𝜇 𝒂, 𝒓, 𝜀 𝑡

𝜀 𝜎

Aging model

൝
ሶ𝜎 = −𝑓𝜎 + 𝐸 ሶ𝜀
ሶ𝑓 = −𝒂𝑓2 + 𝒓 ሶ𝜀2

Aging: when ሶ𝜀 = 0,  
𝜏 increases with slope 𝑎

Rejuvenation: when 
ሶ𝜀 ≠ 0,  𝜏 decreases

=
1

𝜏



Modelling full material behaviour

Aging model combining nonlinearity and relaxation
Can predict response at any time
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Modelling full material behaviour

Aging model combining nonlinearity and relaxation
Can predict response at any time
Measure instant response if quick enough
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Plan
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1) Intrinsic material behaviour

2) Pyramid compression



Behaviour of an asperity

Measurements on pyramidal asperities of melamine foam
Numerical FEM model
Analytical expectation
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1) Experiment 3) FEM models2) Analytical

𝐹 ∝ 𝛿2



Behaviour of an asperity

Experimental results similar to quadratic tendency!
Works ≳ 10 cells in contact
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Behaviour of an asperity

Comparison with FEM model
• Quadratic tendency ≳ 10 cells in contact
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12 cells in contact : nearly continuous
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Behaviour of an asperity

Comparison with FEM model
• Quadratic tendency ≳ 10 cells in contact
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Behaviour of an asperity

Continuous hyperelastic FEM model predicts prefactor
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Application to a surface of several asperitise

• A surface of several pyramids was created and modelled
• Asperity height distribution: quasi-uniform
• Greenwood surface roughness model was used
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Outlook

Application to a real material
• A 3D scan could be analysed to compute asperity info

• Transition to bulk behaviour can be predicted

• Study impact of Poisson effect?
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50 mm



Outlook

Effect of relaxation on dynamic behaviour should be examined
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Thank you
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Modelling material behaviour: relaxation

Relaxation continues at very long durations
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Modelling material behaviour: relaxation

Relaxation could be modelled with generalized Maxwell model

40

𝑵 decay times 𝝉𝒊 =
𝜼𝒊

𝑬𝒊
Static stress 𝑬𝟎

Generalized Maxwell model

Stress response to a Heaviside step strain 𝑟 𝑡 :

 𝑟 𝑡 = 𝑬𝟎𝐻 𝑡 + σ𝑖=1
𝑁 𝑬𝒊𝑒

−
𝑡

𝝉𝒊 𝐻(𝑡)

𝑟 𝑡 − t0  

𝐻(𝑡 − 𝑡0)



Modelling material behaviour: relaxation

However the behaviour is more reminiscent of an aging phenomenon
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Modelling material behaviour: relaxation

However the behaviour is more reminiscent of an aging phenomenon
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൝
ሶ𝜎 = −𝑓𝜎 + 𝐸 ሶ𝜀
ሶ𝑓 = −𝒂𝑓2 + 𝒓 ሶ𝜀2
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Modelling material behaviour: relaxation

However the behaviour is more reminiscent of an aging phenomenon
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Modelling material behaviour: relaxation

However the behaviour is more reminiscent of an aging phenomenon
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Behaviour of an asperity

A sphere of foam follows Hertz’ law (previous work:  Hentati, 2020)
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𝐹 ∝ 𝐸𝑅
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2𝛿
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Behaviour of an asperity

Analytical approximation with a single modulus
Which modulus should be taken?
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Behaviour of an asperity

Analytical approximation with a single modulus
Which modulus should be taken?
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Behaviour of an asperity

Analytical approximation with a single modulus
Which modulus should be taken?
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Behaviour of an asperity

Analytical approximation with a single modulus
Which modulus should be taken?

3 49

  
 

  
  

  
  

  
 

  
 

St
re

ss
 (

kP
a)

Strain (%)

          

   

   

   

 

Fo
rc

e 
(N

)

𝐸𝑠𝑒𝑐𝑎𝑛𝑡 buckling

Indentation (mm)

Hyperelastic stress / strain response Predicted pyramid force

𝐸𝑠𝑒𝑐𝑎𝑛𝑡 buckling

𝐸𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝜀 = 0

min 𝐸𝑠𝑒𝑐

𝐹 ∝ 𝑬 𝛿2



Application to a surface of several asperitise

A surface of several pyramids was created and modelled
Quasi-uniform asperity height distribution
Greenwood surface roughness model
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Outlook

Measurements on radiating plate
Measurements on real engine casing
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Metal plate Porous screen

Excitation
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