

Symposium on the Acoustics of Poro-Elastic Materials

# Multi-Functional Porous Materials: Characterization, Modeling and Potential in System-Level Noise Control

Yutong (Tony) Xue

WanDong Medical – Midea Group, Beijing, China

November 2023

### Introduction

## Acoustic Materials Design and Optimization for Noise and Vibration Control in Complex Systems

- Factor (Design Constraints) to Consider
  - Cost
  - Safety
  - > Weight
  - > Volume
  - Recyclability
  - > Manufacturability







## **Porous Materials**



## **Modeling of Acoustical-Damping Layered Structures**



- \* <u>Applied Acoustics</u>, **134** 145-153 (2018)
  - \*\* Journal of Applied Physics, **126** 165012 (2019)
  - \*\*\* Journal of Sound and Vibration, 459 114866 (2019)

- AFR: micro-bulk relations for porous media \*
- TMM: bulk-acoustical relations including Johnson-Champoux-Allard (JCA) model, Biot theory and B.C.s interpreted by transfer matrices of layered elements \*\*
- NFD: acoustical-damping relations including Euler-Bernoulli beam theory, wavenumber-space Fourier transform and statistical energy analysis \*\*\*
- TMM + NFD + AFR provides a tool to predict and maximize porous media's damping performance by optimizing their microstructures

## **Porous Materials: Acoustics and Beyond**

**Porous damping materials** 





**3D printing materials** 



### **Porous Damping Materials Sound Absorption + Structural Damping**

# **Near-Field Damping (NFD)**



• **Objectives: modeling and optimizing** the near-field damping performance of lightweight sound absorbing porous materials (fiber, foam, etc.) to achieve acoustical-damping multifunctionality

## **Acoustical-Structural Coupling**

• TMM / ACM + NFD – modeling of different target structures \* Journal of Sound and Vibration, 14(4) 525–541 (1971)



**SAPEM 2023** 

## **Damping Effectiveness: Limp vs. Elastic**

> Adding bulk stiffness to the porous layer and bonding it to the panel will create additional structural dissipation





**SAPEM 2023** 

### **NFD Optimization on a Periodic Vibrating Structure \***

\* <u>Journal of Physics: Conf.</u> <u>Series **1264**, 012043 (2019)</u>









**SAPEM 2023** 

#### Significant attenuation in sub-critical frequency region

### **Granular Aerogel**

### **Thermal Insulation + Low Frequency Sound Absorption**

## **Granular Aerogel \***

\* <u>Appl. Sci. 11 4593 (2021)</u> \* Proceedings of SAPEM 2021



Silica aerogel solid

Silica aerogel granules



SEM of granules



#### Level-dependent acoustical performance \*\*





Target granular aerogel in a bulk form

## **Acoustics of Granular Aerogel**

Normal sound absorption measurement vs. Biot limp theory + particle swarm fitted results show that aerogel stacks with larger (diameter > 100µm) particles behaves like limp-porous media (negligible bulk stiffness of frame) \*

\* J. Non-Crys. Solids, 598, 121942 (2022)



### Acoustical Non-linearity (Loss Factor) and Level-Dependence for Granular Aerogel \*....

\* <u>JASA, **151**, 1502-1515 (2022)</u> \* <u>J. Non-Crys. Solid</u>s, **598**, 121942 (2022)



The model accurately captures the level-dependence and evaluates low frequency losses for sub-50µm granular aerogels – powerful tool for us to quantify, optimize and gain understanding of granular aerogel's acoustics SAPEM 2023

### **3D Printed Porous Materials Tunable Acoustical Performance**

### **"Print" Acoustics into Fibers – Recent Findings \***

0.41 mm





#### JCA parameters (marked in blue) calculations

- Expected fiber diameter, df
- Area of single fiber cell, **S** = **HS**\***VS**
- Solidity,  $C = \frac{\pi (df/2)^2}{s}$
- Pore size parameters, CLa = HS df, CLb = VS df
- Airflow Resistivity,  $\sigma = \frac{4\eta C}{(df/2)^2 \left[-\frac{1}{2} \ln C \frac{3}{4} + C \frac{1}{4}C^2\right]}$ , where dynamic viscosity of air  $\eta = 1.846 \times 10^{-5} \text{ kg/(m \cdot s)}$  in room temperature
- Porosity,  $\phi = 1 C$
- Tortuosity,  $\alpha_{\infty} = 2 \phi$
- Viscous Characteristic Length,  $\Lambda$  = whichever is smaller between *CLa* and *CLb*
- Thermal Characteristic Length,  $\Lambda'$  = whichever is larger between CLa and CLb

| Rayls/m MKS | $\sigma$ – Analytical** | $\sigma$ – COMSOL |
|-------------|-------------------------|-------------------|
| ET1         | 533                     | 439               |
| ET2         | 771                     | 610               |
| ET3         | 962                     | 742               |
| ET4         | 1990                    | 3548              |
| ET5         | 6745                    | 6055              |

**SAPEM 2023** 

#### **3D Printing Spinodoid Structure – Structurally-Enhanced Sound Absorber \***

\* Additive Manufacturing, 71, 103608 (2023)



Transversely-Isotropic Poro-elastic (TIP) material model was developed for us to understand more of porous media's anisotropy – to be introduced in the following presentation

**SAPEM 2023** 

### **Tunable Sound Package – Bulk Properties Characterization**

- Measured sound absorption data based on 2"x2" Squared Tube E1050 Test
- Inverse characterization of bulk properties for different porous materials
  - Modified Biot Poro-Elastic Model (Dynamic Loss Factor) for Aerogel Stacks Smaller Particles (IC3100)
  - Biot Limp Model for Aerogel Stacks of Larger Particles (IC3120, LA1000)
  - Biot Rigid Model (JCA) for 3D Printing Materials (Gyroid)

| Property<br>\<br>Material | Bulk<br>Density<br>(kg/m3) | Porosity | AFR<br>(Rayls/m) | Tortuosity | VCL<br>(Micron) | TCL<br>(Micron) | Young's<br>Modulus<br>(Pa) | Poisson's<br>Ratio | Loss<br>Factor |
|---------------------------|----------------------------|----------|------------------|------------|-----------------|-----------------|----------------------------|--------------------|----------------|
| IC3100                    | 37.53                      | 0.999    | 10457000         | 3.0        | 36.08           | 36.08           | 775                        | 0.396              | 10-2.51        |
| IC3120                    | 73.57                      | 0.769    | 108689           | 3.69       | 199.31          | 931.53          | N/A                        | N/A                | N/A            |
| LA1000                    | 66.03                      | 0.671    | 28074            | 2.53       | 1912.82         | 4875.11         | N/A                        | N/A                | N/A            |
| Gyroid                    | N/A(601)                   | 0.520    | 12513            | 1.84       | 133.85          | 148.72          | N/A                        | N/A                | N/A            |

### **Tunable Sound Package Design – Measurement vs. Prediction**



**SAPEM 2023** 

### **Noise Control in Complex Systems Practical Cases of Medical Imaging Devices**

# Noise Control in Medical Imaging Industry



https://www.wandong.com.cn/index.php/Show/index/aid/1195



https://new.qq.com/rain/a/20211101A0AQV400







**SAPEM 2023** 

# NVH in Medical Imaging Industry – MRI //DM Midea





















Modified Sequence + Acoustic Treatment

**SAPEM 2023** 

120Hz

### **NVH in Medical Imaging Industry – MRI**



**SAPEM 2023** 

### NVH in Medical Imaging Industry – MRI Month Midea

• Foam2 outperforms Foam1 on system-level noise control



SAPEM 2023

## NVH in Medical Imaging Industry – CT Midea





噪声传感器位置 (测点1-5) (参照下图中国标GB17589-2011,加设机架中心测点5)





振动传感器位置(测点6-10),分布于外框架周围

**SAPEM 2023** 

### **NVH in Medical Imaging Industry – CT**





**SAPEM 2023** 

### **NVH in Medical Imaging Industry – CT**





**SAPEM 2023** 

## Summary

- Noise control on a system level is more complex than optimizing porous material's acoustical performance
- Powerful analytical and design tools were developed for us to understanding and design porous media's multi-functionality
  - Near-field damping of porous sound absorbing material
  - Low frequency noise control by granular aerogel
  - Tunable sound package design involving 3D printed porous structure
- System-level noise control needs comprehensive and diagnostic understanding of the system as a preliminary knowledge in order to design good treatments
- To look forward: from material-level to system level "digital twin" model combining multi-physics (next keynotes)

### **List of Relevant Publications & Presentations**

- 1. Y. Xue and J. S. Bolton, "Structural vibration damping by the use of poro-elastic layers: a summary," Technical Report of Inter-Noise, Chiba, Japan, August 2023.
- 2. Y. Xue and J. S. Bolton, "Design and optimization of lightweight porous dampers," Technical Report of the 184th ASA Meeting, Chicago, IL, USA, May 2023, <a href="https://docs.lib.purdue.edu/herrick/265/">https://docs.lib.purdue.edu/herrick/265/</a>.
- 3. Y. Xue, J. S. Bolton and Y. Liu, "Modeling and coupling of acoustical layered systems that consist of elements having different transfer matrix dimensions", *Journal of Applied Physics*, **126**, 165012 (2019), <a href="https://doi.org/10.1063/1.5108635">https://doi.org/10.1063/1.5108635</a>.
- 4. Y. Xue, J. S. Bolton, T. Herdtle, S. Lee and R. Gerdes, "Structural damping by layers of fibrous media on a periodically-constrained vibrating panel," *Journal of Physics: Conference Series* **1264**, 012043 (2019), <u>https://iopscience.iop.org/article/10.1088/1742-6596/1264/1/012043</u>.
- 5. Y. Xue, J. S. Bolton and T. Herdtle, "Design of lightweight fibrous vibration damping treatments to achieve optimal performance in realistic applications," SAE Technical Paper, https://doi.org/10.4271/2019-01-1524.
- 6. Y. Xue, J. S. Bolton, T. Herdtle, S. Lee and R. Gerdes, "Structural damping by lightweight poro-elastic media," *Journal of Sound and Vibration*, **459**, 114866 (2019), https://doi.org/10.1016/j.jsv.2019.114866.
- 7. Y. Xue and J. S. Bolton, "Microstructure design of the lightweight fibrous material acting as a layered damper for a vibrating stiff panel," Journal of the Acoustical Society of America, 143(6), 3254-3265 (2018), https://doi.org/10.1121/1.5038255.
- 8. Y. Xue, J. S. Bolton, R. Gerdes, S. Lee and T. Herdtle, "Prediction of airflow resistivity of fibrous acoustical media having two fiber components and a distribution of fiber radii," Applied Acoustics, **134**, 145-153 (2018), <u>https://doi.org/10.1016/j.apacoust.2018.01.011</u>.
- 9. Y. Xue, J. S. Bolton and Y. Liu, "The acoustical coupling of poro-elastic media in a layered structure based on the transfer matrix method," *Proceedings of Inter-Noise*, paper 1857, Madrid, Spain, June 2019, <a href="https://docs.lib.purdue.edu/herrick/200/">https://docs.lib.purdue.edu/herrick/200/</a>.
- 10. Y. Xue, J. S. Bolton, T. Herdtle, S. Lee and R. Gerdes, "A comparison between glass fibers and polymeric fibers when serving as a structural damping medium for fuselage-like structures," *Proceedings of Inter-Noise*, paper 1478, Chicago, IL, August 2018, <u>https://docs.lib.purdue.edu/herrick/179</u>.
- 11. Y. Xue and J. S. Bolton, "Fibrous material microstructure design for optimal structural damping," *Journal of the Acoustical Society of America*, **143**(3), 1715; *Proceedings of the* 175<sup>th</sup> ASA Meeting, Minneapolis, MN, May 2018, <u>https://docs.lib.purdue.edu/herrick/176</u>.
- 12. Y. Xue and J. S. Bolton, "Fibrous material microstructure design for optimal damping performance," *Proceedings of the Symposium on the Acoustics of Poro-Elastic Materials* (SAPEM), Le Mans, France, December 2017, <u>http://docs.lib.purdue.edu/herrick/168</u>.
- 13. T. Herdtle, Y. Xue and J. S. Bolton, "Numerical modeling of the acoustics of low density fibrous media having a distribution of fiber sizes," *Proceedings of the SAPEM*, Le Mans, France, December 2017, <a href="http://docs.lib.purdue.edu/herrick/167">http://docs.lib.purdue.edu/herrick/167</a>.
- 14. Y. Xue, J. S. Bolton, R. Gerdes, S. Lee and T. Herdtle, "Prediction of airflow resistivity of fibrous acoustical media having double fiber components and a distribution of fiber radii," *Proceedings of Inter-Noise*, pages 5649-5657, Hong Kong, China, August 2017, <u>http://docs.lib.purdue.edu/herrick/165</u>.

**SAPEM 2023** 

### **List of Relevant Publications & Presentations**

- 15. B. Wojciechowski, Y. Xue, A. Rabbani, J. S. Bolton and B. Sharma, "Additively manufactured spinodoid sound absorbers," *Additive Manufacturing*, **71**, 103608 (2023), https://doi.org/10.1016/j.addma.2023.103608.
- 16. L. P. Nobles, B. Sharma, Y. Xue and J. S. Bolton, "Combining granular aerogels with additively manufactured porous structures for broadband sound absorption," *Proceedings* of the 184th ASA Meeting, Chicago, IL, USA, May 2023, <a href="https://docs.lib.purdue.edu/herrick/273">https://docs.lib.purdue.edu/herrick/273</a>.
- 17. Y. Xue, B. Sharma and J. S. Bolton, "Low frequency, wideband noise control by tunable aerogel layers and the potential of multi-functional acoustic materials," Keynotes at the 30th Vibration and Noise Technology Advances (VNTA), Xi'an, China, July 2023, <a href="https://mp.weixin.qq.com/s/7aV2C0Zj6a093GH8QC7vAg">https://mp.weixin.qq.com/s/7aV2C0Zj6a093GH8QC7vAg</a>.
- 18. Y. Xue, J. S. Bolton and B. Sharma, "Tunable sound packages made of granular aerogels and fibrous media," *Noise Control Engineering Journal* (2022), <a href="https://doi.org/10.3397/1/377035">https://doi.org/10.3397/1/377035</a>.
- 19. H. Begum, Y. Xue, J. S. Bolton and K. V. Horoshenkov, "The acoustical properties of air-saturated aerogel powders," *Journal of the Acoustical Society of America*, **151**, 1502 (2022), https://doi.org/10.1121/10.0009635.
- 20. A. Dasyam, Y. Xue, J. S. Bolton and B. Sharma, "Effect of particle size on sound absorption behavior of granular aerogel," *Journal of Non-Crystalline Solids*, **598**, 121942 (2022), <a href="https://doi.org/10.1016/j.jnoncrysol.2022.121942">https://doi.org/10.1016/j.jnoncrysol.2022.121942</a>.
- 21. W. Johnston, Y. Xue, B. Sharma and J. S. Bolton, "Programmable sound absorption performance enabled by 3D printing fibers," *Proceedings of NOVEM*, Auckland, New Zealand, January 2023, <u>https://docs.lib.purdue.edu/herrick/263/</u>.
- 22. H. Begum, Y. Xue, J. S. Bolton, K. V. Horoshenkov, "A key physical mechanism that controls the sound absorption of aerogel powders," *Proceedings of Inter-Noise*, Glasgow, Scotland, August 2022, <u>https://docs.lib.purdue.edu/herrick/257/</u>.
- 23. A. Dasyam, Y. Xue, B. Sharma and J. S. Bolton, "Acoustical properties of granular aerogel agglomerates," *Proceedings of the 182<sup>nd</sup> ASA Meeting*, Denver, CO, May 2022, https://docs.lib.purdue.edu/herrick/247/.
- 24. Y. Xue, B. Sharma and J. S. Bolton, "Tunable aerogel-fiber sound packages for low frequency noise control," *Proceedings of the Symposium on the Material Acoustics, Technologies and Industrialization (MATI)*, Suzhou, China, April 2023.
- 25. Y. Xue, A. Dasyam, J. S. Bolton and B. Sharma, "Low-frequency noise control using layered granular aerogel and limp porous media," *Proceedings of Inter-Noise*, online conference, August 2021, <a href="https://doi.org/10.3397/IN-2021-2215">https://doi.org/10.3397/IN-2021-2215</a>.
- 26. Y. Xue, A. Dasyam, J. S. Bolton and B. Sharma, "Acoustical investigation of aerogel granules modeled as a layer of poro-elastic material," *Proceedings of the Symposium on the Acoustics of Poro-Elastic Materials (SAPEM)*, online conference, March 2021, <a href="https://docs.lib.purdue.edu/herrick/235">https://docs.lib.purdue.edu/herrick/235</a> and <a href="https://sapem2021.matelys.com/proceedings/07-05">https://sapem2021.matelys.com/proceedings/07-05</a> Xue etal.mp4.
- 27. Y. Xue and J. S. Bolton, "Low frequency absorption enhancement by modification of poro-elastic layered sound package," *Proceedings of Noise-Con*, online conference, November 2020, <a href="https://docs.lib.purdue.edu/herrick/233/">https://docs.lib.purdue.edu/herrick/233/</a>.
- 28. S. H. Wasala, Y. Xue, L. Stevens, T. Wiegandt, and T. Persoons, "Numerical simulations of flow induced noise from a dual-rotor cooling fan used in electronic cooling systems," *Proceedings of Inter-Noise*, online conference, August 2021, <a href="https://doi.org/10.3397/IN-2021-1809">https://doi.org/10.3397/IN-2021-1809</a>.
- S. H. Wasala, Y. Xue, T. Wiegandt, L. Stevens and T. Persoons, "Aeroacoustic noise prediction from a contra-rotating cooling fan used in data center cooling systems," AIAA AVIATION Forum Technical Paper, Washington, D.C. June 2021. <u>https://doi.org/10.2514/6.2021-2313</u>.
  SAPEM 2023





## Micro-Macro Relation (AFR) Transfer Matrix Method (TMM)



## **Coupling of Acoustic Terms with the NFD Model**

• TMM / ACM + NFD – based on a harmonic line force-driven, unconstrained panel



## **NFD Modeling Key Point**

An example to show wavenumber ←→ spatial domain Fourier transform



## **NFD Model Validation**

• Velocity response spectrum at x = 0 of a partially-clamped, 1 mm aluminum panel





### **Noise Signal Processing for Faulty Part Diagnosis \***

\* Proceedings of Noise-Con, Paper s76, 2019



- 1: Face-down delivery roller 1
- 2: Face-down delivery roller 2
- 3: Intermediate delivery roller
- 4: Fuser delivery roller
- 5: Inner delivery roller
- 6: Idler roller 1 (not driven)
- 7: Idler roller 2 (not driven)
- 8: Idler roller 3 (not driven)





• Modulation frequency of the envelope



#### Table 2: Diagnoses results from the squeaking signals.

| Noise<br>samples | Strong tonal<br>frequency [Hz] | Modulation<br>frequency [Hz] | Corresponding<br>rotational speed [rps] | Squeaking parts             |
|------------------|--------------------------------|------------------------------|-----------------------------------------|-----------------------------|
| Squeaking 1      | 3779                           | 7.93                         | 8.17                                    | Idler roller 3              |
| Squeaking 2      | 3473                           | 5.80                         | 6.17                                    | Face-down delivery roller 1 |
| Squeaking 3      | 8797                           | 10.40                        | 10.90                                   | Inner delivery roller       |
| Squeaking 4      | 3647                           | 5.81                         | 6.17                                    | Face-down delivery roller 1 |
| Squeaking 5      | 3727                           | 10.40                        | 10.90                                   | Inner delivery roller       |
| Squeaking 6      | 3617                           | 9.60                         | 9.52                                    | Idler roller 1              |

**SAPEM 2023** 

#### **Looking at the Fan Noise and its Disturbance** from a Hard Drive's Perspective \*



8

100

200

500

1000

2000 Frequency [Hz]



\* Proceedings of Inter-Noise, Paper 1809, 2021 \* AIAA AVIATION Forum Technical Paper 2021-2313, 2021

Potential extended application in monitoring and controlling UAV / UAM noise, which is being increasingly focused



Quiet Drones 2022 NASA Acoustics Working Group and UAM Noise Hyundai Launches New Company to Advance Urban Air Mobility: Supernal







ISO10302: R = 12960, R = 13740

LES/FWH + 10 dE

20

Experiment