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Challenge: Noise Control = “Constrained” Acoustics

What’s important about noise 

control materials?

➢ Cost 

➢ Safety

➢ Weight

➢ Volume

➢ Recyclability

➢ Structural Performance

➢ Thermal Performance

➢ …

➢ Acoustical Performance



Jet Noise: Broadband Dominant
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(a)

(b)

Aircraft noise source on (a) 

take-off and (b) approach [1]
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Noise generated by a modern jet engine [2]



Acoustic Treatments: A Comparison
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Material Honeycomb acoustic 

liners [3]

Insulation foams [4-5]

(melamine, polyimide)

Metal foams [6] 

(Aluminum)

Granular materials 

(aerogel [7], beads [8])

Demonstration

Advantages Structural

Tunable

Lightweight;

Broadband absorption

Stiffer than normal

foams;

Lightweight;

Broadband 

absorption

Low frequency noise

control;

Lightweight

Disadvantages Tonal over broadband

noise control feature

Structural

Limited tunability

Limited tunability Difficult to contain

→ Motivation: development of tunable and broadband acoustical treatments



Additive Manufacturing
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Schematic of fused deposition modeling (FDM) printer [9] Schematic of stereolithographic (SLA) printer [10]



3D Printed Acoustic Treatments with Periodic Microstructure
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Schematic of fiber sample [12]

Gyroid with overlaid fibers [13]

Truss Structures [14]

Triply periodic minimal surfaces 

(TPMS) with (a) primitive, (b) gyroid, 

and (c) diamond unit cells [11]

(a) (b) (c)

Fluorite-plate 

unit cell [16]

‘Sphere subtracting’ sample (a) 

pore network and (b) unit cell [15]

Folded slit unit cell [19]Body-centered 

cubic unit cell [17]

Narrow tube array with 

hexagonal unit cell [18]
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3D Printed Spinodoid with Non-Periodic Microstructure

Advantage of non-periodic microstructure

• Optimization options

• Easy to generate gradients and anisotropy

Introducing our target material

• Spinodoid Structure, with potentials in 

acoustical plus structural applications 

Modeling: Gaussian Random Fields [22]

Physics: Spinodal Decomposition 

[20-21], e.g. oil & water separating out Fabrication: 3D Printing

Lamellar Cubic

Columnar Isotropic

Bed Temperature: 60°C

Nozzle Diameter: 0.4 mm

Layer height: 0.1 mm

𝐺𝑅𝐹 =

𝑖=1

𝑁
2

𝑵
cos 𝒙𝒘,𝒊 ∙ 𝒙 𝜷 + 𝜑𝑤,𝑖 𝜑𝑏 = 2𝑒𝑟𝑓−1 2𝝆 − 1Super-position of waves:



SAPEM 2023

Acoustics of 3D Printed Spinodoid [23]

Measured normal 

incidence sound 

absorption coefficient

Johnson-

Champoux-Allard 

(JCA) Model [24-25]

Fitted sound absorption 

coefficient given 

characterized bulk properties

Inversely-

Characterized 

Bulk Properties

Johnson-

Champoux-Allard 

(JCA) Model [24-25]

1-inch (25.4mm) samples
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Anisotropic 3D Printed Spinodoid

Columnar

Lamellar

JCA 

Model 

[24-25]

Fitted

• Sound absorption measured at 

both XY- and YZ-plane-incidence 

Note

• Bulk density, ρb (calculated from 

sample weight and volume)

• Porosity, 𝜙 = 1 − 𝜌𝑏/𝜌𝑠, ρs = 1.25 

g/cm3 is the PLA density

Inversely-

Characterized

• Inversely-characterized properties are very different

in the XY-normal and YZ-normal directions, and are 

consistent with physical expectations: 
2-inch (50.8mm) samples
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Transversely-Isotropic Poro-elastic (TIP) Model

XY-normal direction

Flow resistivity, σxy

Tortuosity, α∞xy

VCL, Λxy

TCL, Λ′xy

Young’s Modulus, E1xy

Poisson’s ratio, 𝜈𝑥𝑦
Loss factor, ηmxy

Bulk density, ρb

Porosity, 𝜙

YZ-normal direction

Flow resistivity, σyz

Tortuosity, α∞yz

VCL, Λyz

TCL, Λ′yz

Young’s Modulus, E1yz

Poisson’s ratio, 𝜈𝑦𝑧
Loss factor, ηmyz

➢ JCA Model [24-25] applied 

for both directions

➢ Biot Theory [26] adapted 

for transversely isotropic 

poro-elastic media [27] 

XY-normal direction

Bulk modulus, Kfxy

Mass coupling factors:

ρ111, ρ121, ρ221

YZ-normal direction

Bulk modulus, Kfyz

Mass coupling factors:

ρ112, ρ122, ρ222

Fluid coefficients: 

M, Q, R

Elastic coefficients:

A, C, F, N, G

➢ Solution of 

characteristic 

dispersion 

equation

➢ Solution of 

amplitude 

coefficients of 

field variables

Wavenumbers: 

k1, k2=−k1, 

k3, k4=−k3, 

k5, k6=−k5

Amplitude 

coefficients:

𝛼𝑖, 𝛽𝑖, 𝛾𝑖, i=1,2,3

➢ Boundary 

condition 

coupling by the 

transfer matrix 

method (TMM) [28] 

or the arbitrary 

coefficient 

method (ACM) [29]

Sound 

absorption 

coefficients

Note: In this study, 

Large but finite stiffness 

(E1=109Pa, 𝝂=0.1, 

ηm=0.01) was given at 

anisotropic spinodoid’s 

both directions to make it 

“rigid-framed”
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Sound Absorption Prediction by TIP

➢ TIP reproduces results as rigid (JCA) model

➢ Backing condition affects little, due to the nature of 

rigid- instead of elastic-framed

➢ As incident angle ↑, depth resonance frequency ↑ 

& impedance-matching absorption peak frequency ↓
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Sound Absorption Prediction by TIP

➢ TIP reproduces results as rigid (JCA) model

➢ Backing condition affects little, due to the nature of 

rigid- instead of elastic-framed

➢ As incident angle ↑, depth resonance frequency ↑ 

& impedance-matching absorption peak frequency ↓
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Surface Normal Impedance Normalized by 𝜌0𝑐0

➢ Columnar is almost locally reacting, and may potentially perform well in duct lining applications



➢ 3D printed spinodoid shows good broadband sound absorption performance, while holding
potentials in such as optimization flexibility, structural durability, etc.

➢ Fully-isotropic spinodoids’ acoustical performance can be accurately characterized and
predicted by the JCA model

➢ Transversely-isotropic poro-elastic (TIP) model developed based on the Biot theory is
capable of predicting sound absorption for anisotropic spinodoids: i.e., columnar and lamellar

➢ The acoustic anisotropy analyzed by the TIP model proved locally-reacting acoustical
feature and random incidence sound absorption potentials of columnar spinodoids

➢ Future work:

• Examine columnar locally-reacting advantage by random incidence and duct lining tests

• 3D printing and acoustic modeling of gradient spinodoid

• For more information, please refer to the our publication in Additive Manufacturing [23]
and Brittany’s thesis [30]

• Presentation will be available on Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/
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Summary

http://docs.lib.purdue.edu/herrick/
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