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Challenge: Noise Control = “Constrained” Acoustics

What’s important about noise

control materials?

> Cost

> Safety

» Weight
» Volume
» Recyclability

> Structural Performance

> Thermal Performance

> ...

> Acoustical Performance
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Jet Noise: Broadband Dominant
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(b) ‘ Noise generated by a modern jet engine [2]

Aircraft noise source on (a)
take-off and (b) approach [1]
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Acoustic Treatments: A Comparison
Insulation foams [4-5]

Material Honeycomb acoustic ' = Metal foams [6] Granular materials
liners [3] (melamine, polyimide) | (Aluminum) (aerogel [7], beads [8])
VTR A Xe: - V‘ 17\

Demonstration

P e
- >
> o > o

( \ o ! y‘ dW (L F
Honeycomb —
Layer Layer
|

Frequency Frequency

Advantages Structural Lightweight; Stiffer than normal  Low frequency noise
Tunable Broadband absorption  foams; control;
Lightweight; Lightweight
Broadband
absorption
Disadvantages Tonal over broadband  Structural Limited tunability Difficult to contain
noise control feature Limited tunability

-> Motivation: development of tunable and broadband acoustical treatments
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Additive Manufacturing
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Schematic of fused deposition modeling (FDM) printer [9]
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Schematic of stereolithographic (SLA) printer [10]




3D Printed Acoustic Treatments with Periodic Microstructure
S L .

(@) (b) (c) ‘

Triply periodic minimal surfaces didsdidi
(TPMS) with (a) primitive, (b) gyroid, Schematic of fiber sample [12]
and (c) diamond unit cells [11]

narrow

wide channels
channels

large
pore

small
pores

(1/8)
‘Sphere subtracting’ sample (a)
pore network and (b) unit cell [15]

D

Truss Structures [14]

Fluorite-plate
, unit cell [16]

Body-centered Narrow tube array with 404 gjit unit cell [19]
cubic unit cell [17] hexagonal unit cell [18]
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3D Printed Spinodoid with Non-Periodic Microstructure

Advantage of non-periodic microstructure Introducing our target material

* Optimization options

« Spinodoid Structure, with potentials in

+ Easy to generate gradients and anisotropy acoustical plus structural applications
) Bed Temperature: 60°C
Cubic § Nozzle Diameter: 0.4 mm
@ Layer height: 0.1 mm

Physics: Spinodal Decomposition

[20-21], e.g. oil & water separating OUté Modeling: Gaussian Random Fields [22] Fabrication: 3D Printing
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Super-position of waves:  GRF = z /NCOS[(xW,i X)B+@ui] ©p= V2erf(2p-1)
i=1
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Acoustics of 3D Printed Spinodoid [23]

Additively Manufactured Spinodoid Sound Absorbers
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(JCA) Model [24-25]
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Anisotropic 3D Printed Spinodoid
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Transversely-Isotropic Poro-elastic (TIP) Model

Bulk density, p,
Porosity, ¢

XY-normal direction
Flow resistivity, o,,
Tortuosity, a
VCL, A,
TCL, N,
Young’s Modulus, E
Poisson’s ratio, vy,
Loss factor, 1,

coxy

1xy

YZ-normal direction
Flow resistivity, o,
Tortuosity, a
VCL, A,
TCL, A\,
Young’'s Modulus, E
Poisson’s ratio, v,,
Loss factor, 1,

lyz
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» JCA Model [24-25] applied
for both directions

» Biot Theory [26] adapted
for transversely isotropic
poro-elastic media [27]

XY-normal direction
Bulk modulus, Ky,
Mass coupling factors:

P111: P121y P221

YZ-normal direction
Bulk modulus, Ky,
Mass coupling factors:

P112: P122: P222

Fluid coefficients:
M, Q,R

Elastic coefficients:
A C,FN,G

>

Solution of
characteristic
dispersion
equation

Solution of
amplitude
coefficients of
field variables

Note: In this study,
Large but finite stiffness
(E,=10°Pa, v=0.1,
n.,=0.01) was given at
anisotropic spinodoid’s
both directions to make it
“rigid-framed”

Wavenumbers:
Ky, K==k,

Ks, K,=—Kg,

ks, Ke=—Ksg
Amplitude
coefficients:

ai, ,Bi, Vi, i:1,2,3

» Boundary
condition
coupling by the
transfer matrix
method (TMM) [28]
or the arbitrary
coefficient
method (ACM) [29]

Sound
absorption
coefficients




Sound Absorption Prediction by TIP

Lamellar - Sound Absorption (o) Predicted by Transversely-Isotropic Poro-Elastic Model
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Sound Absorption Prediction by TIP

Columnar - Sound Absorption («) Predicted by Transversely-Isotropic Poro-Elastic Model
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Surface Normal Impedance Normalized by p,c,

Lamellar - Hard Backing, Unbonded
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» Columnar is almost locally reacting, and may potentially perform well in duct lining applications
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Summary

>

>

3D printed spinodoid shows good broadband sound absorption performance, while holding
potentials in such as optimization flexibility, structural durability, etc.

Fully-isotropic spinodoids’ acoustical performance can be accurately characterized and
predicted by the JCA model

Transversely-isotropic poro-elastic (TIP) model developed based on the Biot theory is
capable of predicting sound absorption for anisotropic spinodoids: i.e., columnar and lamellar

The acoustic anisotropy analyzed by the TIP model proved locally-reacting acoustical
feature and random incidence sound absorption potentials of columnar spinodoids

Future work:

« Examine columnar locally-reacting advantage by random incidence and duct lining tests
- 3D printing and acoustic modeling of gradient spinodoid

For more information, please refer to the our publication in Additive Manufacturing [23]
and Brittany’s thesis [30]

Presentation will be available on Herrick E-Pubs:
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http://docs.lib.purdue.edu/herrick/
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