

Symposium on the Acoustics of Poro-Elastic Materials

Acoustical Properties of Anisotropic Spinodoid Structures

Yutong (Tony) Xue¹, Brittany Wojciechowski², Bhisham Sharma³ and J. Stuart Bolton⁴

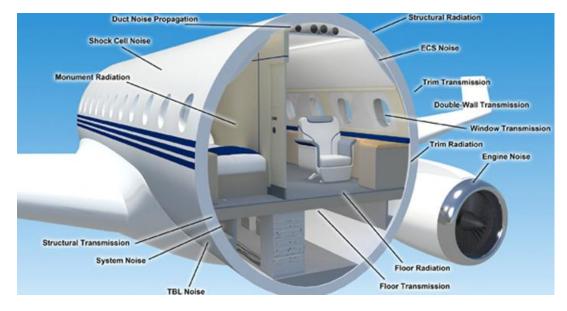
¹WanDong Medical, Midea Group, Beijing, China

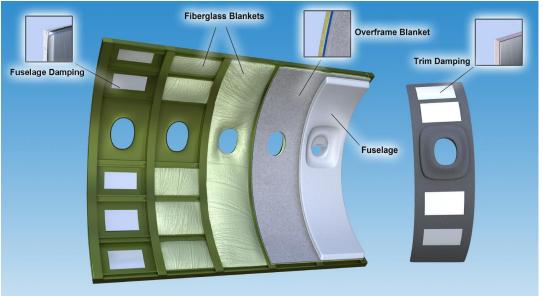
²Department of Aerospace Engineering, Wichita State University, Wichita, KS, U.S.A

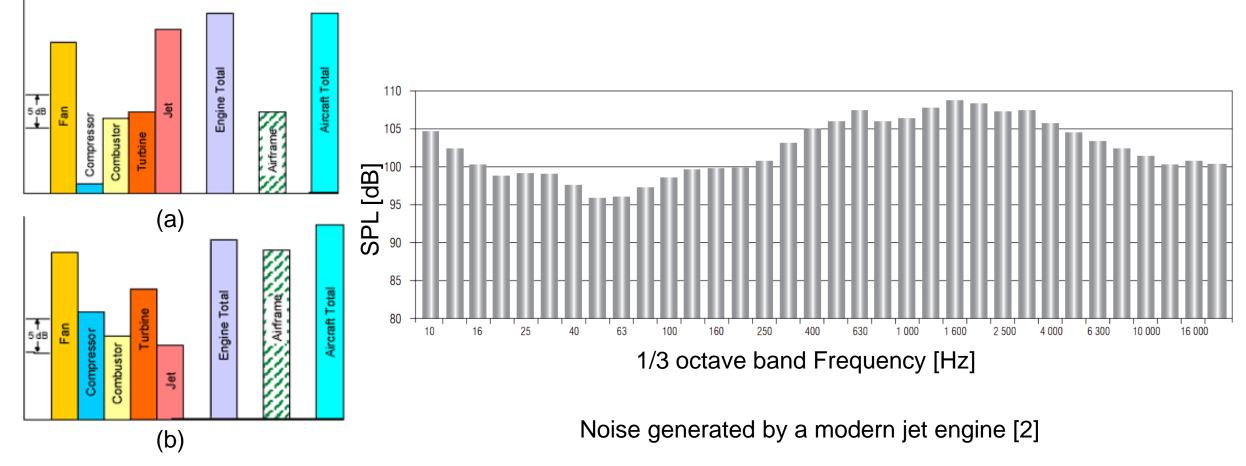
³Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, U.S.A

⁴Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN, U.S.A

November 2023

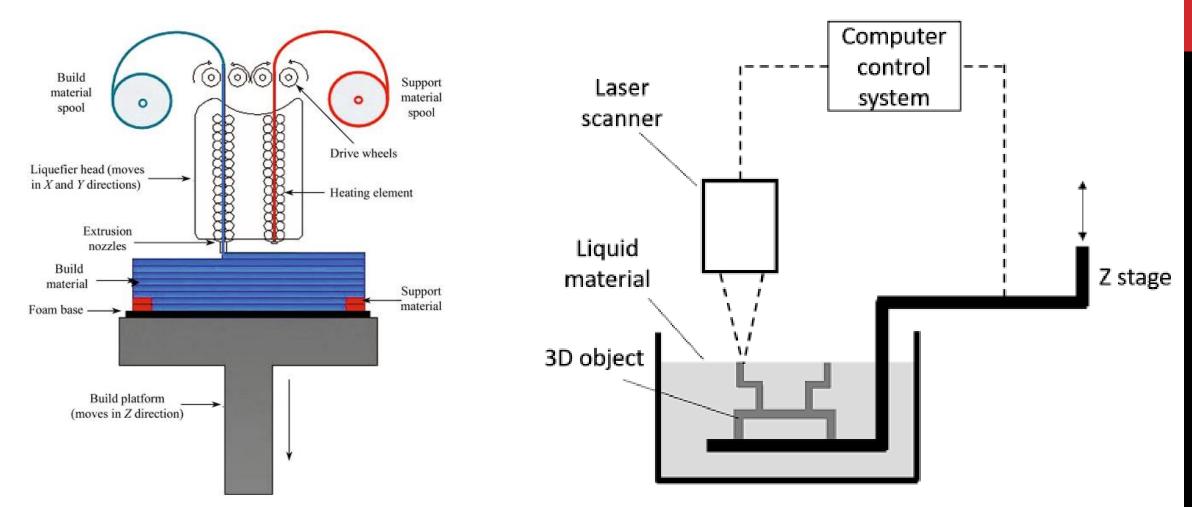

Challenge: Noise Control = "Constrained" Acoustics


What's important about noise control materials?


- Safety
- > Weight
- Volume
- Recyclability
- Structural Performance
- > Thermal Performance
- ≻ ...

Acoustical Performance

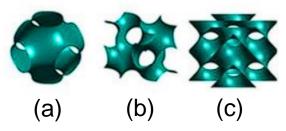
Jet Noise: Broadband Dominant

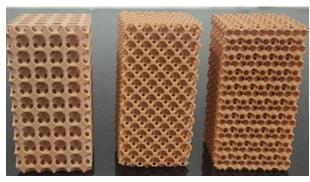

Aircraft noise source on (a) take-off and (b) approach [1]

Acoustic Treatments: A Comparison

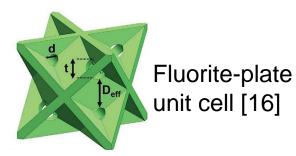
Material	Honeycomb acoustic liners [3]	Insulation foams [4-5] (melamine, polyimide)	Metal foams [6] (Aluminum)	Granular materials (aerogel [7], beads [8])
Demonstration	Face sheets Face sheets Honeycomb Honeycomb Layer $Double \alpha$ Layer frequency frequency			Image: mail of the second se
Advantages	Structural Tunable	Lightweight; Broadband absorption	Stiffer than normal foams; Lightweight; Broadband absorption	Low frequency noise control; Lightweight
Disadvantages	Tonal over broadband noise control feature	Structural Limited tunability	Limited tunability	Difficult to contain

→ Motivation: development of tunable and broadband acoustical treatments

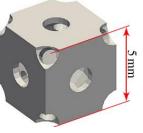

Additive Manufacturing


Schematic of fused deposition modeling (FDM) printer [9]

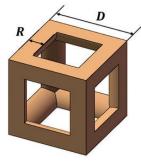
Schematic of stereolithographic (SLA) printer [10]


3D Printed Acoustic Treatments with Periodic Microstructure

Triply periodic minimal surfaces (TPMS) with (a) primitive, (b) gyroid, and (c) diamond unit cells [11]

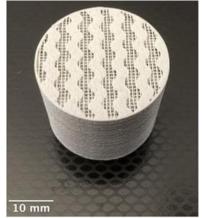


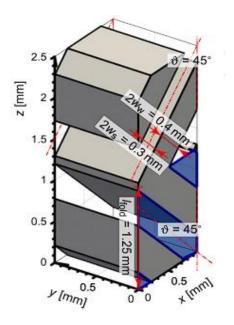
Truss Structures [14]



Schematic of fiber sample [12]

wide channels large pore small pores (1/8)

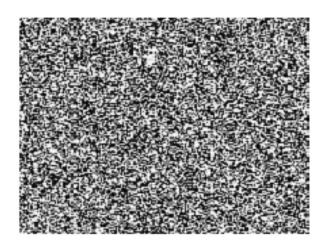

'Sphere subtracting' sample (a) pore network and (b) unit cell [15]


Body-centered cubic unit cell [17]

Narrow tube array with hexagonal unit cell [18]

\$30 mm

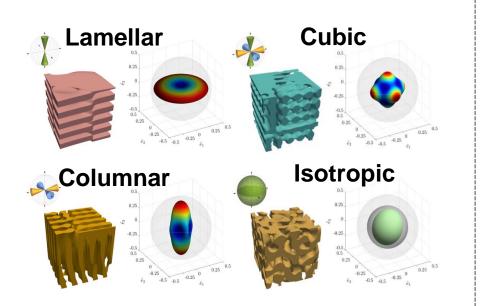
Gyroid with overlaid fibers [13]

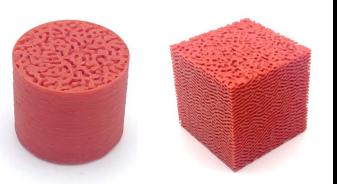


Folded slit unit cell [19]

3D Printed Spinodoid with Non-Periodic Microstructure

Advantage of non-periodic microstructure

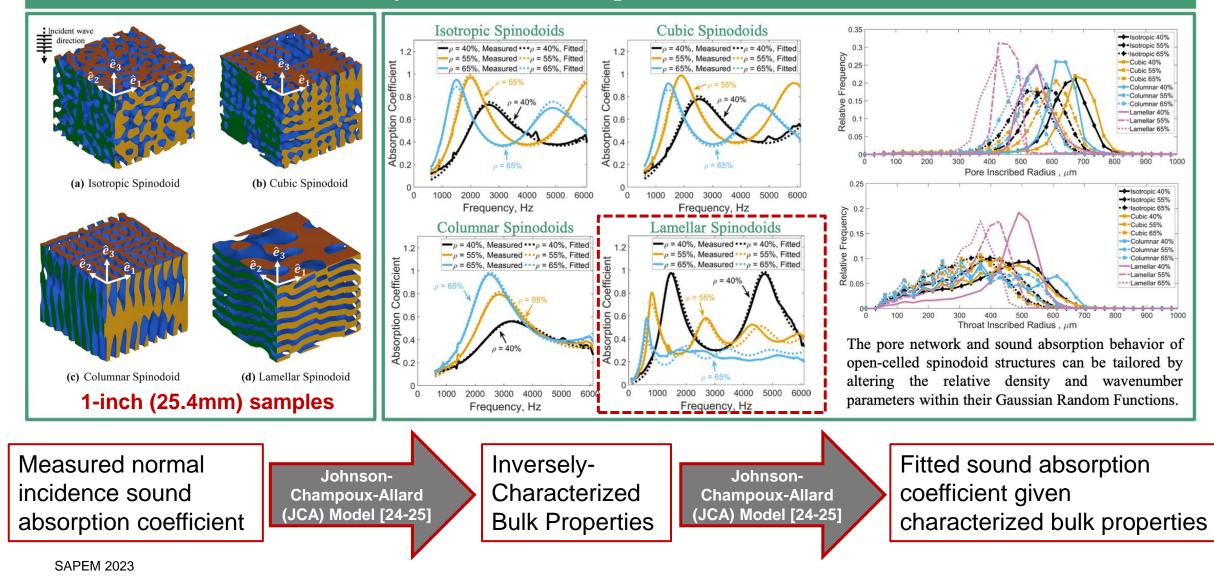

- Optimization options
- Easy to generate gradients and anisotropy


Physics: Spinodal Decomposition [20-21], e.g. oil & water separating out

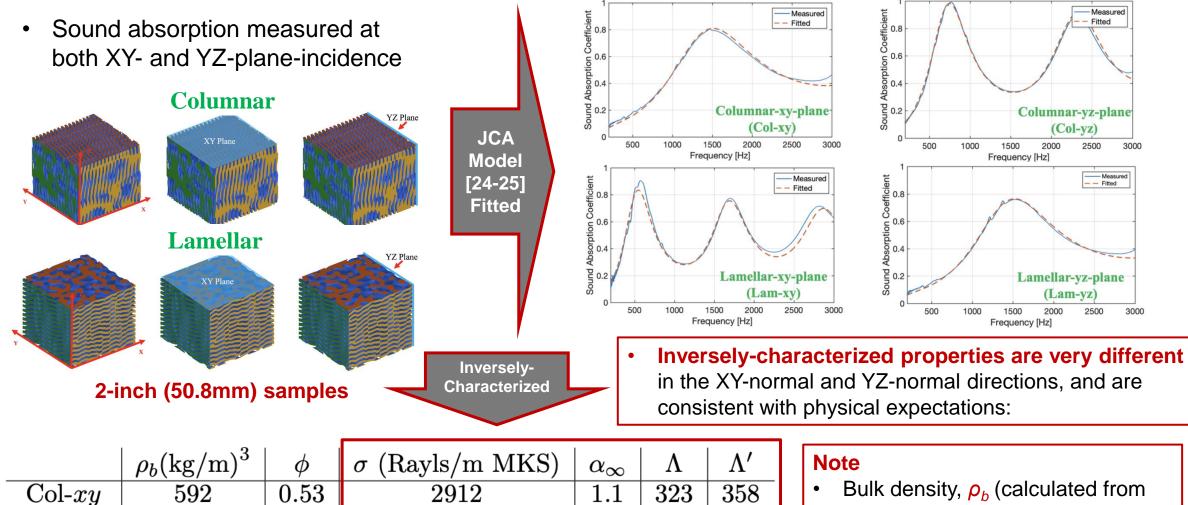
Introducing our target material

Spinodoid Structure, with potentials in acoustical plus structural applications

Bed Temperature: 60°C Nozzle Diameter: 0.4 mm Layer height: 0.1 mm


Fabrication: 3D Printing

Super-position of waves: $GRF = \sum_{i=1}^{N} \sqrt{\frac{2}{N}} \cos[(x_{w,i} \cdot x)\beta + \varphi_{w,i}] \quad \varphi_b = \sqrt{2} erf^{-1}(2\rho - 1)$


Modeling: Gaussian Random Fields [22]

Acoustics of 3D Printed Spinodoid [23]

Anisotropic 3D Printed Spinodoid

1.1

379

421

/					
	1.1	323	358	•	Bulk density, ρ_b (calculated from
	3.9	279	311		sample weight and volume)
	73	$\frac{-10}{281}$	402	•	Porosity, $\phi = 1 - \rho_b / \rho_s$, $\rho_s = 1.25$
	1.0	201	402		g/cm ³ is the PLA density

SAPEM 2023

 $\operatorname{Col}-yz$

Lam-xy

Lam-yz

592

613

613

0.53

0.51

0.51

14312

30450

2419

Transversely-Isotropic Poro-elastic (TIP) Model

Bulk density, ρ_b Porosity, ϕ

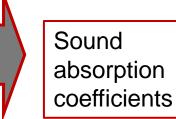
XY-normal direction Flow resistivity, σ_{xy} Tortuosity, $\alpha_{\infty xy}$ VCL, Λ_{xy} TCL, Λ'_{xy} Young's Modulus, E_{1xy} Poisson's ratio, ν_{xy} Loss factor, η_{mxy}

YZ-normal direction Flow resistivity, σ_{yz} Tortuosity, $\alpha_{\infty yz}$ VCL, Λ_{yz} TCL, Λ'_{yz} Young's Modulus, E_{1yz} Poisson's ratio, ν_{yz} Loss factor, η_{myz}

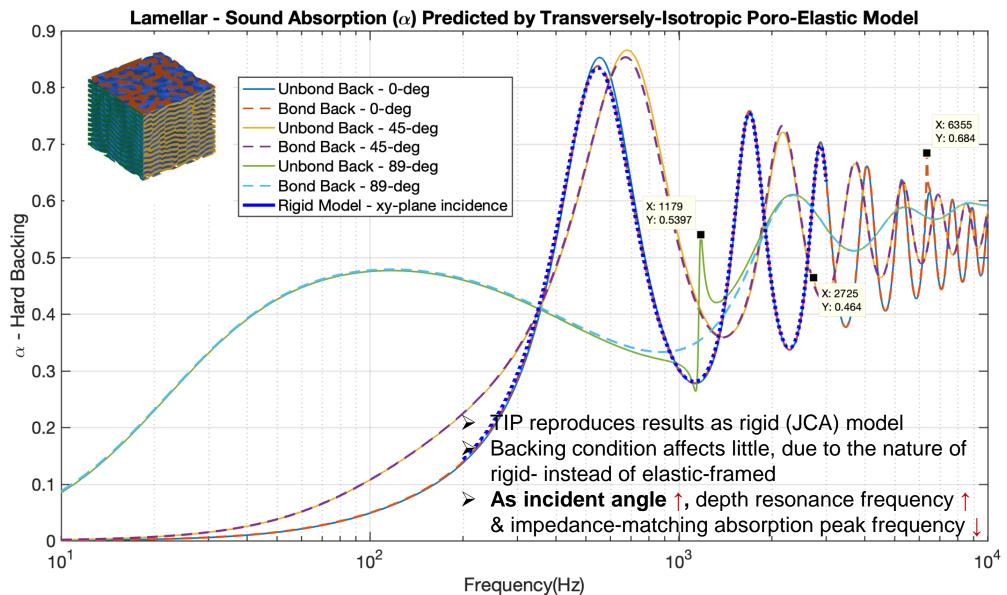
- JCA Model [24-25] applied for both directions
- Biot Theory [26] adapted for transversely isotropic poro-elastic media [27]

XY-normal direction Bulk modulus, K_{fxy} Mass coupling factors: $\rho_{111}, \rho_{121}, \rho_{221}$

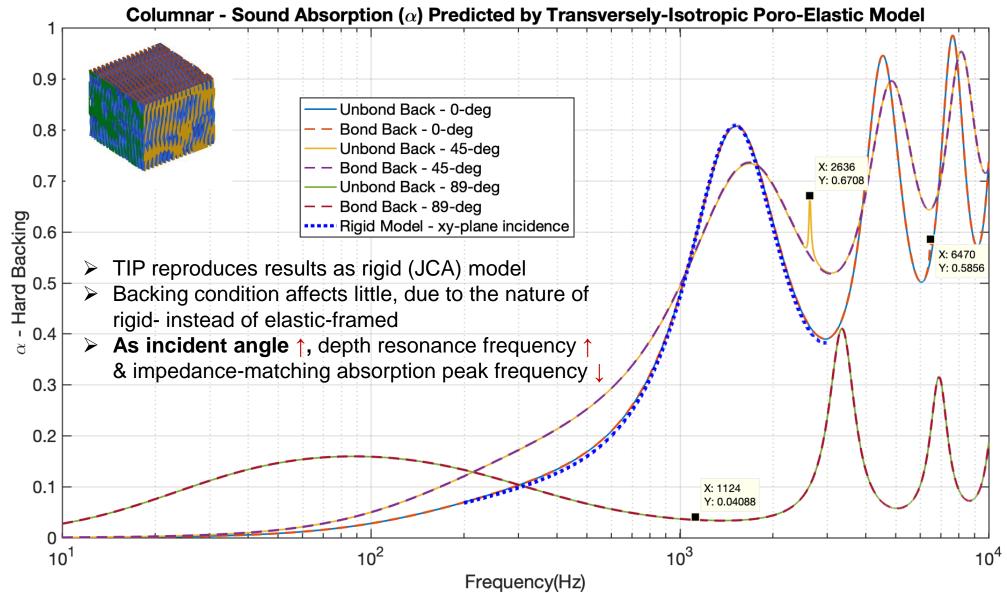
YZ-normal direction Bulk modulus, K_{fyz} Mass coupling factors: $\rho_{112}, \rho_{122}, \rho_{222}$

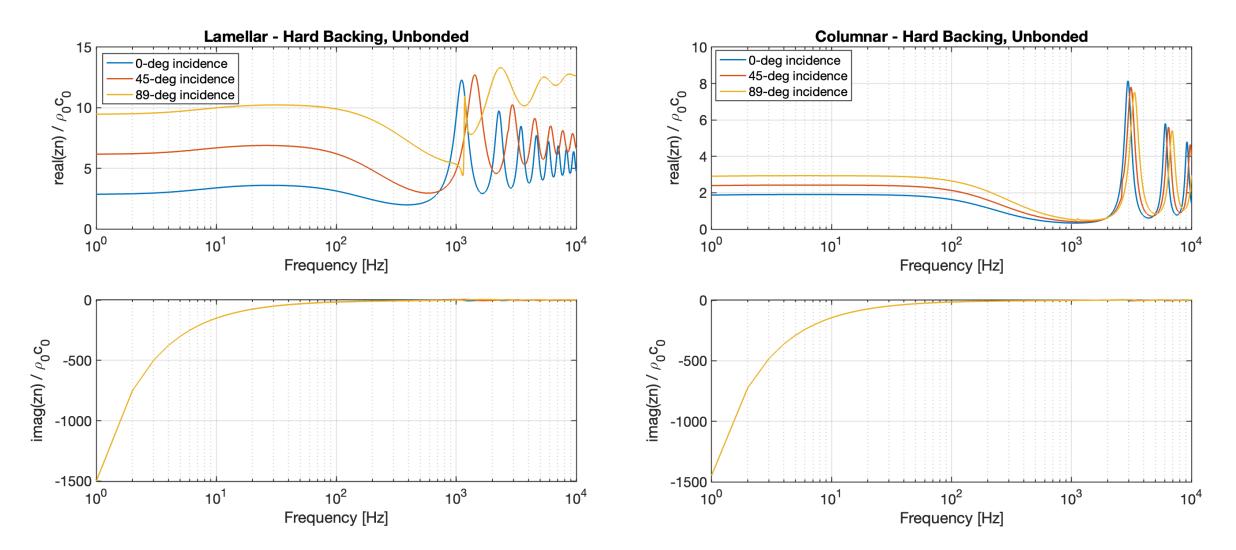

Fluid coefficients: *M*, *Q*, *R* Elastic coefficients: *A*, *C*, *F*, *N*, *G*

- Solution of characteristic dispersion equation
- Solution of amplitude coefficients of field variables


- Wavenumbers: $k_1, k_2 = -k_1,$ $k_3, k_4 = -k_3,$ $k_5, k_6 = -k_5$ Amplitude coefficients: $\alpha_i, \beta_i, \gamma_i, i = 1,2,3$

Note: In this study, Large but finite stiffness $(E_1=10^9$ Pa, $\nu=0.1$, $\eta_m=0.01$) was given at anisotropic spinodoid's both directions to make it "rigid-framed"


Boundary condition coupling by the transfer matrix method (TMM) [28] or the arbitrary coefficient method (ACM) [29]


Sound Absorption Prediction by TIP

Sound Absorption Prediction by TIP

Surface Normal Impedance Normalized by $\rho_0 c_0$

> Columnar is almost locally reacting, and may potentially perform well in duct lining applications

Summary

- SD printed spinodoid shows good broadband sound absorption performance, while holding potentials in such as optimization flexibility, structural durability, etc.
- Fully-isotropic spinodoids' acoustical performance can be accurately characterized and predicted by the JCA model
- Transversely-isotropic poro-elastic (TIP) model developed based on the Biot theory is capable of predicting sound absorption for anisotropic spinodoids: i.e., columnar and lamellar
- The acoustic anisotropy analyzed by the TIP model proved locally-reacting acoustical feature and random incidence sound absorption potentials of columnar spinodoids
- ➢ Future work:
 - Examine columnar locally-reacting advantage by random incidence and duct lining tests
 - 3D printing and acoustic modeling of gradient spinodoid
- For more information, please refer to the our publication in Additive Manufacturing [23] and Brittany's thesis [30]
- Presentation will be available on Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/

References

[1] AIRBUS, "Getting to Grips with Aircraft Noise," (2003).

[2] W. Konopka, M. Pawlaczyk-Łuszczyńska, and M. Śliwińska-Kowalska, "The influence of jet engine noise on hearing of technical staff," *Medycyna Pracy*, **65**, no. 5, pp. 583-592 (2014). https://doi.org/10.13075/mp.5893.00045.

[3] D. L. Sutliff, D. M. Nark, and M. G. Jones, "Multi-degree-of-freedom liner development: Concept to flight test," *International Journal of Aeroacoustics*, **20**, no. 5-7 (2021). <u>https://doi.org/10.1177/1475472X211023860</u>.

[4] L. D. Koch, "NASA's Bio-Inspired Acoustic Absorber Concept," N.G.R. Center, Editor. 2017.

[5] K. Hong, J. S. Bolton, R. J. Cano, E. S. Weiser, B. J. Jensen, R. J. Silcox, B. Howerton, J. Maxon, T. Wang, and T. Lorenzi, "Validation of a polyimide foam model for use in transmission loss applications," in:NOISE-CON 2010, Baltimore, Maryland.

[6] A. Arjunan, A. Baroutaji, A. S. Praveen, A. G. Olabi, and C. J. Wang, "Acoustic performance of metallic foams," *Reference Module in Materials Science and Materials Engineering* (2019). <u>https://doi.org/10.1016/B978-0-12-803581-8.11561-9</u>.

[7] A. Dasyam, Y. Xue, J. S. Bolton, and B. Sharma, "Effect of particle size on sound absorption behavior of granular aerogel," *Journal of Non-Crystalline Solids*, **598**, 121942 (2022). <u>https://doi.org/10.1016/j.jnoncrysol.2022.121942</u>.

[8] T. G. Zieliński, "Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads," *Journal of Applied Physics*, **116**, 034905, (2014). <u>https://doi.org/10.1063/1.4890218</u>.

[9] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, "Optimization of fused deposition modeling process parameters: a review of current research and future prospects," *Advances in Manufacturing*, **3**, pp. 42-53 (2015). <u>https://doi.org/10.1007/s40436-014-0097-7</u>.

[10] J. Huang, Q. Qin, and J. Wang, "A Review of Stereolithography: Processes and Systems," *Processes*, **8**, no. 9 (2020). <u>https://doi.org/10.3390/pr8091138</u>.
[11] W. Yang, J. An, C. K. Chua, and K. Zhou, "Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography," *Virtual and Physical Prototyping*, **15**, no. 2, pp. 242-249 (2020). <u>https://doi.org/10.1080/17452759.2020.1740747</u>.

[12] W. Johnston and B. Sharma, "Additive manufacturing of fibrous sound absorbers," Additive Manufacturing, 41 (2021).

https://doi.org/10.1016/j.addma.2021.101984.

[13] W. Johnston, P. Kankanamalage, and B. Sharma, "3D printed multifunctional, load-bearing, low-frequency sound absorbers," in:INTER-NOISE 2021, Washington, D.C.

[14] S. Deshmukh, A. Borkar, A. Alkanar, S. Krishnan, and S. Ramamoorthy, "A priori determination of the elastic and acoustic responses of periodic poroelastic materials," *Applied Acoustics*, **169** (2020). <u>https://doi.org/10.1016/j.apacoust.107455</u>.

[15] K. C. Opiela and T. G. Zieliński, "Microstructural design, manufacturing and dual-scale modelling of an adaptable porous composite sound absorber," *Composites Part B: Engineering*, **187** (2020). <u>https://doi.org/10.1016/jcompositesb.2020.107833</u>.

References

[16] X. Li, X. Yu, J. W. Chua, H. P. Lee, J. Ding, and W. Zhai, "Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption," *Small*, **17**, no. 24 (2021). <u>https://doi.org/10.1002/smll.202100336</u>.

[17] Z. Lai, M. Zhao, C. H. Lim, and J. W. Chua, "Experimental and numerical studies on the acoustic performance of simple cubic structure lattices fabricated by processing," *Materials Science in Additive Manufacturing*, **1**(4) (2022). <u>https://doi.org/10.18063/msam.v1i4.22</u>.

[18] D. C. Akiwate, M. D. Date, B. Venkatesham, and S. Suryakumar, "Acoustic properties of additive manufactured narrow tube periodic structures," *Applied Acoustics*, **136**, pp. 123-131 (2018). <u>https://doi.org/10.1016/j.apacoust.2018.02.022</u>.

[19] K. C. Opiela, T. G. Zieliński, and K. Attenborough, "Limitations on validating slitted sound absorber designs through budget additive manufacturing," *Materials & Design*, **218** (2022). <u>https://doi.org/10.1016/j.matdes.2022.110703</u>.

[20] S. M. Allen, Spinodal Decomposition, in Encyclopedia of Materials: Science and Technology, K.H. Jürgen Buschow, et al., Editors. 2001, Elsevier. p. 8761-8764. [21] "File:Cahn-Hillard Animation.gif," Wikipedia. <u>https://en.wikipedia.org/wiki/File:CahnHilliard_Animation.gif</u>

[22] S. Kumar, S. Tan, Li Zheng, and D. M. Kochmann, "Inverse-designed spinodoid metamaterials," *npj Computational Materials*, **6**, no.73 (2020). <u>https://doi.org/10.1038/s41524-020-0341-6</u>.

[23] B. Wojciechowski, Y. Xue, A. Rabbani, J. S. Bolton and B. Sharma, "Additively manufactured spinodoid sound absorbers," *Additive Manufacturing*, **71**, 103608 (2023), <u>https://doi.org/10.1016/j.addma.2023.103608</u>.

[24] D. L. Johnson, J. Koplik, and R. Dashen. "Theory of dynamic permeability and tortuosity in fluid-saturated porous media," *Journal of Fluid Mechanics*, **176**, pp. 379-402 (1987), https://doi.org/10.1017/S0022112087000727.

[25] Y. Champoux and J.-F. Allard. "Dynamic tortuosity and bulk modulus in air- saturated porous media," *Journal of Applied Physics*, **70**(4), pp. 1975-1979 (1991), https://doi.org/10.1063/1.349482.

[26] M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid," The Journal of Acoustical Society of America, **28**(2), pp. 168-191 (1956), https://doi.org/10.1121/1.1908239 and https://doi.org/10.1121/1.1908241.

[27] Jeong-Woo Kim, "Sound Transmission through Lined, Composite Panel Structures: Transversely Isotropic Poro-elastic Model," Ph.D. thesis, Purdue University (2005).

[28] Y. Xue, J. S. Bolton, and Y. Liu, "Modeling and coupling of acous- tical layered systems that consist of elements having different trans- fer matrix dimensions," *Journal of Applied Physics*, **126**, 165012 (2019), <u>https://doi.org/10.1063/1.5108635</u>.

[29] J. S. Bolton, N. M. Shiau, and Y. J. Kang, "Sound transmission through multi-panel structures lined with elastic porous materials," *Journal of Sound and Vibration*, **191**(3), pp. 317-347 (1996), <u>https://doi.org/10.1006/jsvi.1996.0125</u>.

[30] Brittany Wojciechowski, "Experimental Investigation of Acoustic Absorption of Additively Manufactured Spinodoid Metamaterials," Master's thesis, Wichita State University (2020).

THANK YOU FOR YOUR ATTENTION!