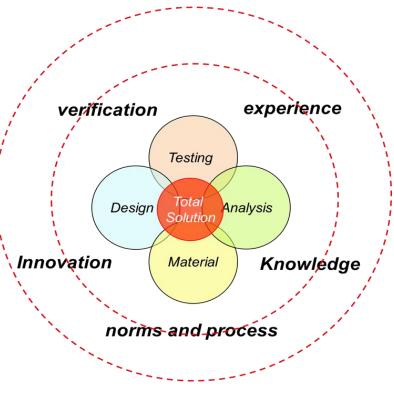


Enhancing the Acoustic Performance of Sound-Absorbing Materials through Surface Trim Modification

7th Nov. 2023

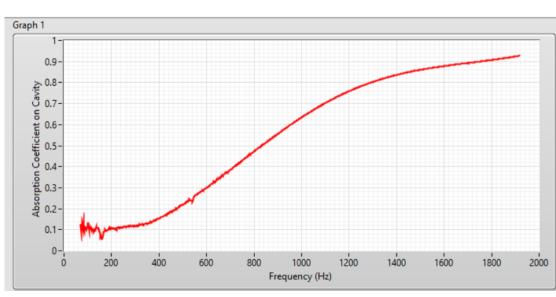

- 1. ProBiot Lab Introduction
- 2. Current Material Property Study
- 3. Optimization
- 4. Micro-Perforate Panel + Absorber

Topics

1. ProBiot Lab Introduction

 送 H ProBiot Group

ProBiot Lab is a global leader in the construction, commercial transformation, engineering empowerment and industrialization of advanced theoretical systems for porous materials and artificial structures.


2. Current Material Property Study

Sample	Melt blown PP + black PET trim
Laboratory environment	Temperature: 25 °C, Relative humidity: 40 %, Atmospheric pressure: 1024 mbar
Sample dimension	Diameter: 100mm Thickness: 15mm
Porosity	0.999
Airflow Resistivity (Pa·s/m² or N·s/m4)	59161
Tortuosity	1
Viscous characteristic length (µm)	8.7
Thermal characteristic length (µm)	17.3

A Leading Platform for Empowering Science&Technology and Industry through Material Innovation. 4

Weight:

~620g/m^2

Sample to be improve

Sample	Melt blown PP + white PET trim
Laboratory environment	Temperature: 25 °C, Relative humidity: 40 %, Atmospheric pressure: 1024 mbar
Sample dimension	Diameter: 100mm Thickness: 15mm
Porosity	0.999
Airflow Resistivity (Pa·s/m ² or N·s/m ⁴)	52421
Tortuosity	1
Viscous characteristic length (µm)	23
Thermal characteristic length (μm)	46

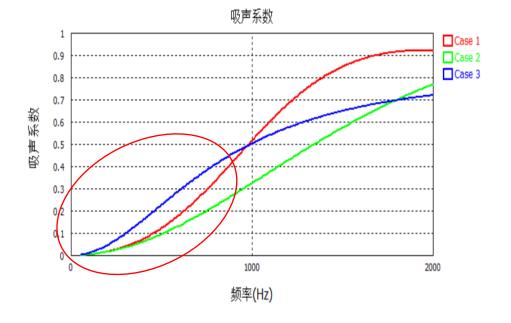
3. Optimization

Rigid-Porous Acoustic Model: Johnson-Champoux-Allard(JCA)

$$ilde{
ho}(\omega) = rac{lpha_{\infty}
ho_0}{\phi} \Bigg[1 + rac{\sigma\phi}{j\omega
ho_0lpha_{\infty}} \sqrt{1 + jrac{4lpha_{\infty}^2\eta
ho_0\omega}{\sigma^2\Lambda^2\phi^2}} \Bigg]$$

$$\widetilde{K}(\omega) = \frac{\gamma P_0/\phi}{\gamma - (\gamma - 1) \left[1 - j \frac{8\kappa}{\Lambda'^2 C_p \rho_0 \omega} \sqrt{1 + j \frac{\Lambda'^2 C_p \rho_0 \omega}{16\kappa}}\right]^{-1}}$$

$$ilde{c} = \sqrt{rac{ ilde{K}_{EQ}}{ ilde{
ho}_{EQ}}} \qquad \qquad ilde{Z}_{EQ} = ilde{
ho}_{EQ} ilde{c} = \sqrt{ ilde{
ho}_{EQ} ilde{K}_{EQ}}$$

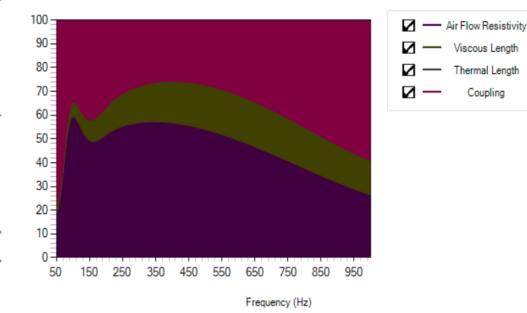

$$\tilde{k} = \frac{\omega}{\tilde{c}} = \omega \sqrt{\frac{\tilde{\rho}_{EQ}}{\tilde{\kappa}_{EQ}}}$$
 $\tilde{Z}_S = -j * \tilde{Z}_{EQ} * \cot(\tilde{k} * T)$

$$\tilde{R} = (Z_0 - \tilde{Z}_S) / (Z_0 + \tilde{Z}_S)$$

Alpha=1-abs $(\tilde{R})^2$

Frequency band(20-1000Hz) Object=max_Alpha(φ , σ , $\alpha \infty$, Λ' , Λ)

Case 1—Meltblown_black_620g/m² Case 2—Meltblown_white_280g/m² Case 3—Perfect_absorber_0-1000Hz


3. Optimization

Sample Perfect Melt blown Melt blown PP + white PP + black Absorber PET trim PET trim (0-1000Hz)Temperature: 25 °C, Relative humidity: 40 Laboratory %, Atmospheric pressure: 1024 mbar environment Diameter: 100mm Sample dimension Thickness: 20mm Porosity 0.999 0.999 0.992 Airflow Resistivity $(Pa \cdot s/m^2 \text{ or }$ 59161 52421 162462 N⋅s/m⁴) Tortuosity 1 1 1 Viscous characteristic 8.7 23 10.28 length (µm) Thermal 46 80.59 characteristic 17.3 length (µm)

ensistivity Analysis Fast Method - Absorption Coefficient SensitivityIn

Sensistivity Analysis

Low frequency absorption will benefit from high air flow resistivity.

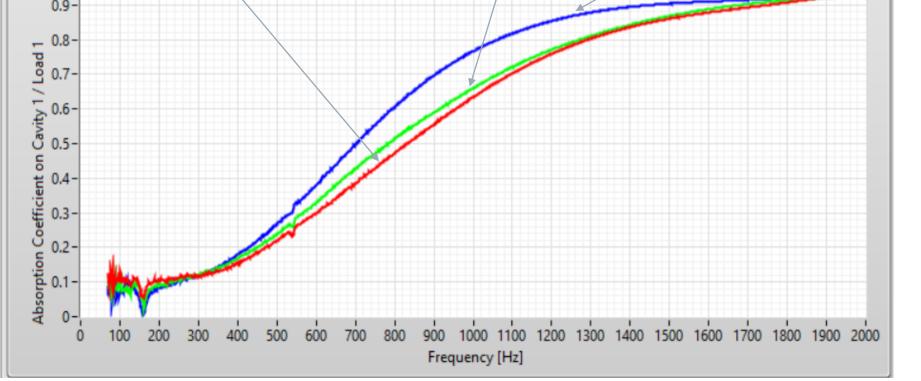
3. Optimization

Example:

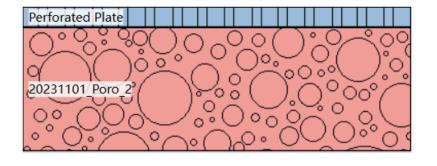
- $\sigma 1 = 216040 \text{ Pa.s/m}^2$
- $h_1 = 0.0025 \text{ m}$
- $\sigma^2 = 52421 \text{ Pa.s/m}^2$
- $h_2 = 0.0125 \text{ m}$
- σ = 79691 Pa.s/m²

By using high flow resistance thin layer trim, we can increase the total airflow resistivity!

specific airflow resistance


$$R_S = R_{1S} + R_{2S} = \sigma_1 * h_1 + \sigma_2 * h_2$$

$$\sigma = \frac{R_s}{h_1 + h_2} = \frac{\sigma_1 * h_1 + \sigma_2 * h_2}{h_1 + h_2}$$



4. MPP + Absorber

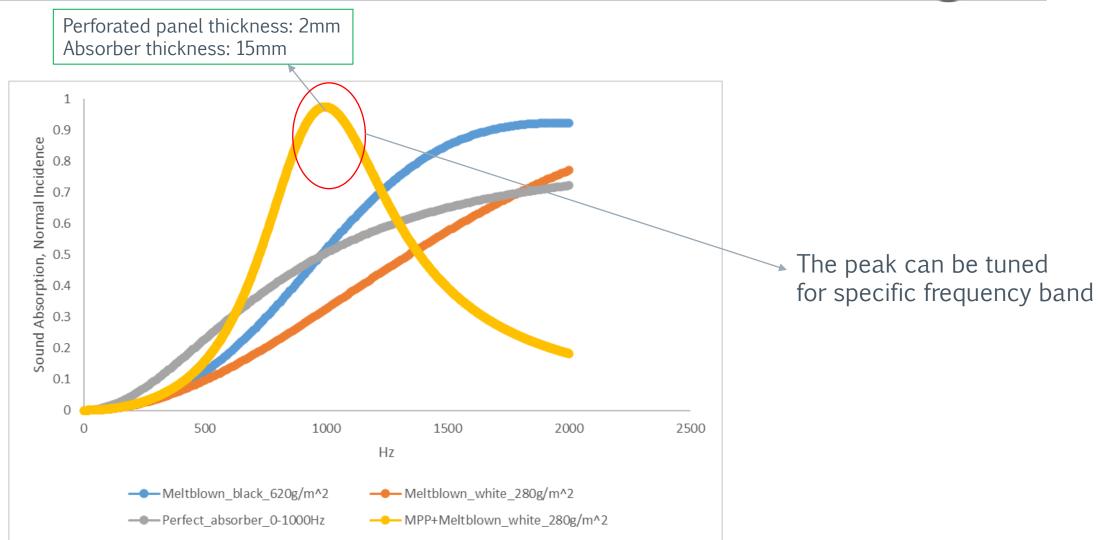
 $\sigma=8\eta/(\phi^*r^2)$

α∞=1+2* ε /h

 $\epsilon = (1 - 1.13\xi - 0.09\xi^2 + 0.27\xi^3) * 8r/3\pi$

 $\xi = 2\sqrt{rac{\phi}{\pi}}$

Multilayer – TMM in <u>series</u>



$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a & b \\ c & a \end{pmatrix}_1 \begin{pmatrix} a & b \\ c & a \end{pmatrix}_2 \begin{pmatrix} a & b \\ c & a \end{pmatrix}_3 \begin{pmatrix} a & b \\ c & a \end{pmatrix}_4 \begin{pmatrix} a & b \\ c & a \end{pmatrix}_5$$

Reference: Acoustical characterization of perforated facings (matelys.com)

4. MPP + Absorber

Q&A