## Optimized configuration of multi-layered polyurethane foams in a dissipative silencer for broadband noise reduction

Symposium on the Acoustics of Poro-Elastic Materials 10th, Nov, 2023

#### Haesang Yang, Dongheon Kang, and Woojae Seong

Seoul National University, South Korea



Underwater Acoustics Laboratory, Dept. of Naval Archi. & Ocean Engineering

# Background (1/2)

- Silencers are indispensable elements of modern pipe-line system (e.g., automotive, aircraft & ship industry, HVAC applications).
  - A dissipative silencer containing absorbing materials inside has an ability of noise control by transferring acoustic/vibration energy to thermal energy.
- There are numerous models for computing sound attenuation through dissipative silencers each having advantages and drawbacks according to the configuration in hand.





# Background (2/2)

- If the solid structure of the absorbing materials has a finite stiffness (poroelastic materials such as foam), it is known that three type of waves are allowed to propagate through the medium (Biot theory).
- We investigate the acoustic performance of a dissipative silencer lined with poro-elastic absorbing materials.
  - Acoustic performance: transmission loss (TL)
  - Optimized configuration of multi-layered polyurethan (PU) foams





- Axisymmetric cylindrical chamber duct of length L
- Inlet and outlet pipes (regions ① and ③)
  - each having a circular cross-section with rigid walls

• Fluid domain 
$$(0 < r < r_1)$$
:  $\nabla^2 p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = 0$ 

*p*: acoustic pressure *c*<sub>0</sub>: sound speed in fluid

#### Porous absorbing material – Biot-Allard model



- Absorbing media  $(r_1 < r < r_2)$ :
  - Wave propagation in the media is described via Biot-Allard model.<sup>1</sup>

Biot Model : Saturating fluid is a liquid, like water or oil. Only considered viscous loss.

$$\rho_{av}\frac{\partial^{2}}{\partial t^{2}}\mathbf{u} + \rho_{f}\frac{\partial^{2}}{\partial t^{2}}\mathbf{w} - \nabla \cdot \sigma = 0 \qquad \qquad -\left(\rho_{av}-\frac{\rho_{f}^{2}}{\rho_{c}(\omega)}\right)\omega^{2}\mathbf{u} - \nabla \cdot \left(\sigma_{d}(\mathbf{u})-\alpha_{B}p_{f}\mathbf{I}\right) = \frac{\rho_{f}}{\rho_{c}(\omega)}\nabla p_{f}$$

$$\rho_{f}\frac{\partial^{2}}{\partial t^{2}}\mathbf{u} + \frac{\mu_{f}}{\kappa}\frac{\partial}{\partial t}\mathbf{w} + \rho_{f}\frac{\tau}{\varepsilon_{p}}\frac{\partial^{2}}{\partial t^{2}}\mathbf{w} + \nabla p_{f} = 0 \qquad \qquad -\frac{\omega^{2}}{M}p_{f} - \nabla \cdot \frac{1}{\rho_{c}(\omega)}\left(\nabla p_{f}-\omega^{2}\rho_{f}\mathbf{u}\right) = \omega^{2}\alpha_{B}\varepsilon_{vol}$$

Biot-Allard Model : Porous material is saturated by a gas, like air.

Viscous and Thermal losses are included.  

$$\mu(\omega) = \mu \left(1 + \frac{4i\omega\tau_{\infty}^{2}\mu\rho_{f}}{R_{f}^{2}L_{\nu}^{2}\varepsilon_{p}^{2}}\right)^{\frac{1}{2}}, \quad \chi_{f}(\omega) = \frac{1}{\gamma p_{A}} \left[\gamma - (\gamma - 1)\left(1 + \frac{8\mu}{i\omega L_{th}^{2}Pr\rho_{f}}\sqrt{1 + \frac{i\omega L_{th}^{2}Pr\rho_{f}}{16\mu}}\right)^{-1}\right]$$

<sup>1</sup>Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials. (Elsevier, New York, 1993).

. ..

# Simulation tool & configuration

- COMSOL Multiphysics
  - Acoustic-Solid-Poroelastic Waves Interface Physics
  - 2D Axisymmetric model
- 2D Axisymmetric Configuration
  - Cylindrical pipe and silencer with liner



- Material Properties
  - Water in pipe
  - Air in absorbing material (PU foam)
  - Polyurethane A, B, C, D, E
    - <u>Density, Shear Modulus, and</u> <u>Loss factor</u>

(Standard properties of a KRAIBURG Co. (DE))

- For the rest, random values were applied.
- **Steel** as casing (to surround the pipe and the silencer)
- **Rubber** as liner (to physically separate the pipe and the silencer)

| Туре                                        | Polyurethane |      |       |      |            |  |
|---------------------------------------------|--------------|------|-------|------|------------|--|
|                                             | Α            | B    | С     | D    | E          |  |
| Density<br>[kg/m <sup>3</sup> ]             | 652          | 770  | 828   | 915  | <b>992</b> |  |
| Shear Modulus<br>[MPa]                      | 1.15         | 1.85 | 2.84  | 3.51 | 6          |  |
| Loss factor                                 | 0.1          | 0.1  | 0.1   | 0.09 | 0.09       |  |
| Poisson's ratio                             |              |      | 0.4   |      |            |  |
| Porosity                                    |              |      | 0.5   |      |            |  |
| Flow Resistivity<br>[kPa*s/m <sup>2</sup> ] |              |      | 1,000 |      |            |  |
| Viscous<br>characteristic length<br>[um]    |              |      | 20    |      |            |  |
| Thermal<br>characteristic length<br>[um]    |              |      | 20    |      |            |  |
| Tortuosity                                  |              |      | 1.5   |      |            |  |

#### • 1-layer PU foam

- Acoustic performance according to changes in each material properties
- Based on Standard polyurethan B

| Density          | 600 ~ 1,000kg/m <sup>3</sup>      |                    |
|------------------|-----------------------------------|--------------------|
| Shear Modulus    | 2 ~ 10MPa                         | —                  |
| Loss factor      | 0.06 ~ 0.14                       |                    |
| Porosity         | 0.2 ~ 0.8                         | 1 Jawar DUJ fa ana |
| Flow Resistivity | 500 ~ 30,000 kPa*s/m <sup>2</sup> | I-layer PU toam    |

#### Simulation results – parameter study



Shear modulus

Loss factor

#### Simulation results – baseline model

• 1-layer PU foam



#### Simulation results - baseline model

• 2-layer PU foams (1/2)



#### Simulation results - baseline model

• 2-layer PU foams (2/2)



#### Simulation results – baseline model

• 3-layer PU foams



## Simulation results - baseline model

• 5-layer PU foams



# Optimization

✓ Two kinds of objective function  $f_1 \& f_2$ 

- 1. Maximize TL :  $\min_{\sigma} f_1(\sigma)$ ,  $f_1(\sigma) = \sum_{\sigma} (-TL)$
- 2. Uniformize TL :  $\min_{\sigma} f_2(\sigma)$ ,  $f_2(\sigma) = \sum |TL \overline{TL}|$

if  $(TL - \overline{TL}) \ge 0$ , then 0





#### ✓ Control variables

Standard PU foams : A, B, C, D, E



#### ✓ Solver

Nelder-Mead (NM) method (downhill simplex method)

• 3-layer PU foams (using objective function  $f_1$ : maximize TL)



• 3-layer PU foams (using objective function  $f_2$ : uniformize TL)



• 5-layer PU foams (using objective function  $f_1$ : maximize TL)



• 5-layer PU foams (using objective function  $f_2$  : uniformize TL)



 Enhancement of the acoustic performance of a dissipative silencer with multi-layered PU foams



- 1. We verify material properties that affect the acoustic performance of dissipative silencer.
  - ◆ Shear modulus & loss factor → great influence on acoustic performance
- 2. We show to enhance the acoustic performance by **optimizing the arrangement sequence of absorbing materials.**

|                                                           | 3-layer                               |                                         | 5-layer                               |                                         |  |
|-----------------------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|--|
| Case                                                      | Objective function 1<br>(Maximize TL) | Objective function 2<br>(Uniformize TL) | Objective function 1<br>(Maximize TL) | Objective function 2<br>(Uniformize TL) |  |
| Arrangement of Absorbing materials                        | AAD                                   | AAC                                     | ABBCC                                 | ABDCB                                   |  |
| Avg. TL [dB]                                              | 25.91                                 | 24.80                                   | 25.32                                 | 23.93                                   |  |
| Increased TL [dB]<br>(Compared to TL before optimization) | 3~9                                   | 2~7                                     | 2~8                                   | 1~7                                     |  |

 $\rightarrow$  A relatively low increment at applying  $f_2$  focusing on enhancing only below-average TL

# Thank You