

Design and sound performance analysis of porous materials with gradient airflow resistivity

Shanghai University Of Engineering Science

Participant: Yuxiang Cheng

Date: November 7, 2023

1. Research background

1、 Research background

Problems and challenges faced

Design + Preparation determines Application! ! !

2. Research

2、 Research

Shannen Hintersity of Eaglace

2.1 Gradient material sound absorption modeling and validation

TMM method in gradient airflow resistivity materials

(a) 三聚氰胺泡沫样件

(b) 聚氨酯泡沫样件

Experimental validation of sound absorption models for impedance tube

2、 Research

SAC of polyurethane foam

Gradient airflow resistivity discrete layering scheme

2.3 Gradient structure study

	第一层流阻率 (<i>N·s/m</i> ⁴)	第二层流阻率 (<i>N · s /m</i> ⁴)
低-高梯度变化	12800	32800
	12800	42800
	12800	52800
高-低梯度变化	32800	12800
	42800	12800
	52800	12800

Different gradient structures and gradient difference schemes

Airflow resistivity gradient structure: Low to High

Range of variation:12800-52800

2.4 Gradient form study

The gradient difference between the first and second layer

Airflow resistivity designed as a logarithmic gradient

2.4 Gradient form study

$$\sigma(x) = a \ln(bx + c)$$
 a= 0.2,0.5,0.8,1,2

Logarithmic gradient form factor *a* of 0.8

3. Conclusions

(1) Gradient structure: from low to high.

(2) Gradient form: logarithmic.

(3) Airflow resistivity to logarithmic gradient distribution, the logarithmic coefficient a optimal value of about 0.8

Thanks for your attention!

Yuxiang Cheng

